×

zbMATH — the first resource for mathematics

Existence of global solutions to nonlinear fuzzy Volterra integro-differential equations. (English) Zbl 1243.45011
The authors discuss the existence of global solutions to nonlinear fuzzy Volterra integro-differential equations. They introduce mixed solutions as new solutions and prove existence and uniqueness of global solutions for fuzzy initial value problems. One example is given to illustrate the theory discussed.

MSC:
45J05 Integro-ordinary differential equations
45G10 Other nonlinear integral equations
26E50 Fuzzy real analysis
45L05 Theoretical approximation of solutions to integral equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chang, S.S.L.; Zadeh, L.A., On fuzzy mapping and control, IEEE trans. syst. man cybern., SMC-2, 30-34, (1972) · Zbl 0305.94001
[2] Hullermeier, E., An approach to modelling and simulation of uncertain dynamical systems, Internat. J. uncertain. fuzziness knowledge-based systems, 5, 117-137, (1997) · Zbl 1232.68131
[3] Nieto, J.J., The Cauchy problem for continuous fuzzy differential equations, Fuzzy sets and systems, 102, 259-262, (1999) · Zbl 0929.34005
[4] O’Regan, D.; Lakshmikantham, V.; Nieto, J.J., Initial and boundary value problems for fuzzy differential equations, Nonlinear anal., 54, 405-415, (2003) · Zbl 1048.34015
[5] Agarwal, R.P.; O’Regan, D.; Lakshmikantham, V., A stacking theorem approach for fuzzy differential equations, Nonlinear anal., 55, 299-312, (2003) · Zbl 1042.34027
[6] Georgiou, D.N.; Nieto, J.J.; Rodríguez-López, R., Initial value problems for higher-order fuzzy differential equations, Nonlinear anal., 63, 587-600, (2005) · Zbl 1091.34003
[7] Agarwal, R.P.; O’Regan, D.; Lakshmikantham, V., Viability theory and fuzzy differential equations, Fuzzy sets and systems, 151, 563-580, (2005) · Zbl 1074.34009
[8] Khastan, A.; Bahrami, F.; Ivaz, K., New results on multiple solutions for nthorder fuzzy differential equations under generalized differentiability, Bound. value probl., (2009), p. 13, Art. ID 395714 · Zbl 1198.34006
[9] Khastan, A.; Nieto, J.J., A boundary value problem for second order fuzzy differential equations, Nonlinear anal., 72, 3583-3593, (2010) · Zbl 1193.34004
[10] Arshad, S.; Lupulescu, V., On the fractional differential equations with uncertainty, Nonlinear anal., 74, 3685-3693, (2011) · Zbl 1219.34004
[11] Choudary, A.D.R.; Donchev, T., On Peano theorem for fuzzy differential equations, Fuzzy sets and systems, 177, 93-94, (2011) · Zbl 1246.34003
[12] J.J. Nieto, R. Rodríguez-López, M. Villanueva-Pesqueira, Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses, Fuzzy Optim. Decis. Mak, in press (doi:10.1007/s10700-011-9108-3).
[13] Bede, B.; Rudas, I.J.; Bencsik, A.L., First order linear fuzzy differential equations under generalized differentiability, Inform. sci., 177, 1648-1662, (2007) · Zbl 1119.34003
[14] Xu, J.; Liao, Z.; Nieto, J.J., A class of linear differential dynamical systems with fuzzy matrices, J. math. anal. appl., 368, 54-68, (2010) · Zbl 1193.37025
[15] Khastana, A.; Nieto, J.J.; Rodríguez-López, R., Variation of constant formula for first order fuzzy differential equations, Fuzzy sets and systems, 177, 20-33, (2011) · Zbl 1250.34005
[16] Bede, S.G.; Gal, B., Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy sets and systems, 151, 581-599, (2005) · Zbl 1061.26024
[17] Puri, M.L.; Ralescu, D.A., Differentials of fuzzy functions, J. math. anal. appl., 91, 552-558, (1983) · Zbl 0528.54009
[18] Wu, C.; Gong, Z., On Henstock integral of fuzzy-number-valued functions. I, Fuzzy sets and systems, 120, 523-532, (2001) · Zbl 0984.28010
[19] Gal, S.G., Approximation theory in fuzzy setting, (), 617-666 · Zbl 0968.41018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.