# zbMATH — the first resource for mathematics

Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations. (English) Zbl 1244.34009
Summary: We are concerned with the existence and uniqueness of positive solutions for the following singular nonlinear $$(n-1,1)$$ conjugate-type fractional differential equation with a nonlocal term $\begin{cases} D^\alpha_{0+}x(t)+f(t,x(t))=0,\;0<t<1,\;n-1<\alpha\leq n,\\ x^{(k)}(0) =0,\;0\leq k\leq n-2,\;x(1)=\int^1_0x(s)dA(s),\end{cases}$ where $$\alpha \geq 2$$, $$D^\alpha_{0+}$$ is the standard Riemann-Liouville derivative, $$A$$ is a function of bounded variation and $$\int^1_0u(s)dA(s)$$ denotes the Riemann-Stieltjes integral of $$u$$ with respect to $$A$$, $$dA$$ can be a signed measure.

##### MSC:
 34A08 Fractional ordinary differential equations and fractional differential inclusions 47N20 Applications of operator theory to differential and integral equations 34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
Full Text:
##### References:
  Webb, J.; Infante, G., Positive solutions of nonlocal boundary value problems: a unified approach, J. lond. math. soc., 74, 673-693, (2006) · Zbl 1115.34028  Wei, Z., A necessary and sufficient condition for the existence of positive solutions of singular super-linear $$m$$-point boundary value problems, Appl. math. comput., 179, 67-78, (2006) · Zbl 1166.34305  Wei, Z.; Pang, C., The method of lower and upper solutions for fourth order singular $$m$$-point boundary value problems, J. math. anal. appl., 322, 675-692, (2006) · Zbl 1112.34010  Wei, Z., A class of fourth order singular boundary value problems, Appl. math. comput., 153, 865-884, (2004) · Zbl 1057.34006  Wei, Z., Positive solutions of some singular $$m$$-point boundary value problems at nonresonance, Appl. math. comput., 171, 433-449, (2005) · Zbl 1085.34017  Hao, Z.; Liu, L.; Debnath, L., A necessary and sufficient condition for the existence of positive solutions of fourth-order singular boundary value problems, Appl. math. lett., 16, 279-285, (2003) · Zbl 1055.34047  Zhang, X.; Liu, L., A necessary and sufficient condition for positive solutions for fourth-order multi-point boundary value problems with $$p$$-Laplacian, Nonlinear anal., 68, 3127-3137, (2008) · Zbl 1143.34016  Mao, J.; Zhao, Z.; Xu, N., On existence and uniqueness of positive solutions for integral boundary value problems, Electron. J. qual. theory differ. equ., 16, 1-8, (2010)  Du, X.; Zhao, Z., Existence and uniqueness of positive solutions to a class of singular $$m$$-point boundary value problems, Appl. math. comput., 198, 487-493, (2008) · Zbl 1158.34315  Webb, J.; Zima, M., Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems, Nonlinear anal., 71, 1369-1378, (2009) · Zbl 1179.34023  Goodrich, C.S., Existence of a positive solution to a class of fractional differential equations, Appl. math. lett., 23, 1050-1055, (2010) · Zbl 1204.34007  Goodrich, C.S., Existence of a positive solution to systems of differential equations of fractional order, Comput. math. appl., 62, 1251-1268, (2011) · Zbl 1253.34012  Wang, Y., Positive solutions for a nonlocal fractional differential equation, Nonlinear anal., 74, 3599-3605, (2011) · Zbl 1220.34006  Podlubny, I., ()  Kilbas, A.; Srivastava, H.; Nieto, J., Theory and applicational differential equations, (2006), Elsevier Amsterdam  Yuan, C., Multiple positive solutions for $$(n - 1, 1)$$-type semipositone conjugate boundary value problems of nonlinear fractional differential equations, Electron. J. qual. theory differ. equ., 36, (2010), 12 p. · Zbl 1210.34008  Webb, J., Nonlocal conjugate type boundary value problems of higher order, Nonlinear anal., 71, 1933-1940, (2009) · Zbl 1181.34025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.