×

Analysis of a new three-dimensional chaotic system. (English) Zbl 1244.34068

Summary: A new three-dimensional autonomous chaotic system is presented. There are three control parameters and three different nonlinear terms in the governed equations. Basic dynamic properties of the new system are investigated via theoretical analysis and numerical simulation. The nonlinear characteristic of the new three-dimensional autonomous system versus the control parameters is illustrated by bifurcation diagram, Lyapunov-exponent spectrum, phase portraits, etc.

MSC:

34C28 Complex behavior and chaotic systems of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) · Zbl 1417.37129
[2] Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976) · Zbl 1371.37062
[3] Chua, L., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33, 1073–1118 (1986) · Zbl 0634.58015
[4] Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999) · Zbl 0962.37013
[5] Lu, J.H., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002) · Zbl 1063.34510
[6] Qi, G., Chen, G., Du, S.: Analysis of a new chaotic system. Physica A 352, 295–308 (2005)
[7] Murali, K., Lakshmanan, M.: Drive-response scenario of chaos synchronization in identical nonlinear system. Phys. Rev. E 49, 4482–4485 (1994)
[8] Murali, K., Lakshmanan, M.: Secure communication using a compound signal from generalized synchronizable chaotic system. Phys. Lett. A 241, 303–10 (1998) · Zbl 0933.94023
[9] Cuomo, K.M., Oppenheim, A.V., Strogatz, S.H.: Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 40, 626–633 (1993)
[10] Morgül, Ö., Solak, E., Akgül, M.: Observer based chaotic message transmission. Int. J. Bifurc. Chaos 13, 1003–17 (2002) · Zbl 1064.94530
[11] Yang, T.: A survey of chaotic secure communication systems. Int. J. Comput. Cogn. 2, 81–130 (2004)
[12] Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE. Trans. Circuits Syst. 38, 453–456 (1991) · Zbl 1058.37538
[13] Yassen, M.T.: Adaptive control and synchronization of a modified Chua’s circuit system. Appl. Math. Comput. 135, 113–28 (2003) · Zbl 1038.34041
[14] Yassen, M.T.: Chaos synchronization between two different chaotic system using active control. Chaos Solitons Fractals 23, 131–40 (2005) · Zbl 1091.93520
[15] Wang, C., Ge, S.: Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos Solitons Fractals 12, 1199–206 (2001) · Zbl 1015.37052
[16] Li, G.-H.: Synchronization of chaotic systems with parameter driven by a chaotic signal. Chaos Solitons Fractals 26, 1485–9 (2005) · Zbl 1098.37523
[17] Park, J.H.: A note on synchronization between two different chaotic systems. Chaos Solitons Fractals 40, 1538–1544 (2009) · Zbl 1197.93128
[18] Park, J.H.: Adaptive H synchronization of unified chaotic systems. Mod. Phys. Lett. B 23, 1157–1169 (2009) · Zbl 1179.37123
[19] Rucklidge, A.M.: Chaos in models of double convection. J. Fluid Mech. 237, 209–229 (1992) · Zbl 0747.76089
[20] Čelikovský, S., Chen, G.: On a generalized Lorenz canonical form of chaotic systems. Int. J. Bifurc. Chaos 12, 1789–1812 (2002) · Zbl 1043.37023
[21] Čelikovský, S., Chen, G.: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona, Spain (2002), in CD ROM
[22] Čelikovský, S., Chen, G.: On the generalized Lorenz canonical form. Chaos Solitons Fractals 26, 1271–1276 (2005) · Zbl 1100.37016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.