zbMATH — the first resource for mathematics

On almost periodic mild solutions for stochastic functional differential equations. (English) Zbl 1244.34100
Summary: The class of stochastic functional differential equations given by \[ \begin{aligned} dx(t) &= (Ax(t)+ F(t, x(t), xt))\,dt+ G(t,x(t), x_t)\circ d\omega(t),\quad t\in [0,T],\\ x(t) &= \varphi(t)\quad\text{for }t\in [-\sigma,0],\end{aligned} \] is investigated. Under some suitable assumptions, the existence and stability of quadraticmean almost periodic mild solutions for the equations are discussed by means of semigroups of operators and fixed point method. Moreover, an example is given to illustrate our results.

34K50 Stochastic functional-differential equations
34K14 Almost and pseudo-almost periodic solutions to functional-differential equations
34K20 Stability theory of functional-differential equations
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI
[1] Arnold, L.; Tudor, C., Stationary and almost periodic solutions of almost periodic affine stochastic differential equations, Stoch. stoch. rep., 64, 177-193, (1998) · Zbl 1043.60513
[2] C. Corduneanu, Almost Periodic Functions, second ed., Chelsea, New York, 1989. · Zbl 0672.42008
[3] Dorogovtsev, A.; Ortega, O., On the existence of periodic solutions of a stochastic equation in a Hilbert space, Visnik kiiv. univ. ser. mat. mekh, 30, 21-30, (1988) · Zbl 0900.60072
[4] Kawata, T., Almost periodic weakly stationary processes, () · Zbl 0484.60028
[5] Prato, G.; Tudor, C., Periodic and almost periodic solutions for semilinear stochastic evolution equations, Stoch. anal. appl., 13, 13-33, (1995) · Zbl 0816.60062
[6] Swift, R., Almost periodic harmonizable processes, Georgian math. J., 3, 275-292, (1996) · Zbl 0854.60036
[7] Tudor, C., Almost periodic solutions of affine stochastic evolutions equations, Stoch. stoch. rep., 38, 251-266, (1992) · Zbl 0752.60049
[8] E. Slutsky, Sur les fonctions aléatoires presque périodiques et sur la decomposition des functions aléatoires, Actualités Sceintiques et industrielles, Herman, Paris. 738 (1938) 33-55.
[9] Udagawa, M., Asymptotic properties of distributions of some functionals of random variables, Rep. stat. appl. res. union Japan sci. eng., 2, 1-98, (1952)
[10] Bezandry, P.; Diagana, T., Existence of almost periodic solutions to some stochastic differential equations, Appl. anal., 117, 1-10, (2007)
[11] Huang, Z.; Yang, Q., Existence and exponential stability of almost periodic solution for stochastic cellular neural networks with delay, Chaos soliton. fract., 42, 773-780, (2009) · Zbl 1198.60024
[12] Huang, H.; Cao, J., Exponential stability analysis of uncertain stochastic neural networks with multiple delays, Nonlinear anal. real world appl., 8, 646-653, (2007) · Zbl 1152.34387
[13] Bezandry, P., Existence of almost periodic solutions to some functional integro-differential stochastic evolution equations, Statist. probab. lett., 78, 2844-2849, (2008) · Zbl 1156.60046
[14] Luo, J., A note on exponential stability in \(p\)th Mean of solutions of stochastic delay differential equations, J. comput. appl. math., 198, 143-148, (2007) · Zbl 1110.65009
[15] Chang, Y.; Zhao, Z.; N’Guérékata, G., Stepanov-like almost automorphy for stochastic processes and applications to stochastic differential equations, Nonlinear anal. real world appl., 12, 1130-1139, (2011) · Zbl 1209.60034
[16] Liu, K., Uniform stability of autonomous linear stochastic functional differential equations in infinite dimensions, Stoch. process. appl., 115, 1131-1165, (2005) · Zbl 1075.60078
[17] Morozan, T., Almost periodic solutions for Riccati equations of stochastic control, Appl. math. optim., 30, 127-133, (1994) · Zbl 0806.93061
[18] Taniguchi, T., The exponential stability for stochastic delay partial differential equations, J. math. anal. appl., 331, 191-205, (2007) · Zbl 1125.60063
[19] Bezandry, P.; Diagana, T., Square-Mean almost periodic solutions nonautonomous stochastic differential equations, Electron. J. differ. equations, 117, 1-10, (2007) · Zbl 1138.60323
[20] Medjo, T., The exponential behavior of the stochastic three-dimensional primitive equations with multiplicative noise, Nonlinear anal. real world appl., 12, 799-810, (2011) · Zbl 1216.35187
[21] Luo, J., Exponential stability for stochastic neutral partial functional differential equations, J. math. anal. appl., 355, 414-425, (2009) · Zbl 1165.60024
[22] Tudor, C.; Tudor, M., Pseudo almost periodic solutions of some stochastic differential equations, Math. rep. (bucur.), 51, 305-314, (1999) · Zbl 1019.60058
[23] Luo, J., Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. math. anal. appl., 342, 753-760, (2008) · Zbl 1157.60065
[24] Sun, Y.; Cao, J., \(p\)th moment exponential stability of stochastic recurrent neural networks with time-varying delays, Nonlinear anal. real world appl., 8, 1171-1185, (2007) · Zbl 1196.60125
[25] Jahanipur, R., Stochastic functional evolution equations with monotone nonlinearity: existence and stability of the mild solutions, J. differ. equations, 248, 1230-1255, (2010) · Zbl 1210.34112
[26] A. Halanay, Periodic and almost periodic solutions to affine stochastic systems, in: Proceedings of the Eleventh International Conference on Nonlinear Oscillations Budapest, 1987, János Bolyai Math. Soc. Budapest, (1987) 94-101. · Zbl 0627.34048
[27] Taniguchi, T.; Liu, K.; Truman, A., Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. differ. equations, 181, 72-91, (2002) · Zbl 1009.34074
[28] Chen, W.; Chen, F.; Lu, X., Exponential stability of a class of singularly perturbed stochastic time-delay systems with impulse effect, nonlinear analysis, Nonlinear anal. real world appl., 11, 3463-3478, (2010) · Zbl 1207.34103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.