×

To CG or to HDG: A comparative study. (English) Zbl 1244.65174

Summary: Hybridization through the border of the elements (hybrid unknowns) combined with a Schur complement procedure (often called static condensation in the context of continuous Galerkin linear elasticity computations) has in various forms been advocated in the mathematical and engineering literature as a means of accomplishing domain decomposition, of obtaining increased accuracy and convergence results, and of algorithm optimization. Recent work on the hybridization of mixed methods, and in particular of the discontinuous Galerkin (DG) method, holds the promise of capitalizing on the three aforementioned properties; in particular, of generating a numerical scheme that is discontinuous in both the primary and flux variables, is locally conservative, and is computationally competitive with traditional continuous Galerkin (CG) approaches.
In this paper we present both implementation and optimization strategies for the hybridizable discontinuous Galerkin (HDG) method applied to two dimensional elliptic operators. We implement our HDG approach within a spectral/\(hp\) element framework so that comparisons can be done between HDG and the traditional CG approach.
We demonstrate that the HDG approach generates a global trace space system for the unknown that although larger in rank than the traditional static condensation system in CG, has significantly smaller bandwidth at moderate polynomial orders. We show that if one ignores set-up costs, above approximately fourth-degree polynomial expansions on triangles and quadrilaterals the HDG method can be made to be as efficient as the CG approach, making it competitive for time-dependent problems even before taking into consideration other properties of DG schemes such as their superconvergence properties and their ability to handle \(hp\)-adaptivity.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999) · Zbl 0934.65030
[2] Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19, 7–32 (1985) · Zbl 0567.65078
[3] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous Galerkin methods for elliptic problems. In: Discontinuous Galerkin Methods: Theory, Computation and Applications, pp. 89–101. Springer, Berlin (2000) · Zbl 0948.65127
[4] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002) · Zbl 1008.65080
[5] Blackburn, H.M., Sherwin, S.J.: Instability modes and transition of pulsatile stenotic flow: pulse-period dependence. J. Fluid Mech. 573, 57 (2007) · Zbl 1119.76402
[6] Blackburn, H.M., Barkley, D., Sherwin, S.J.: Convective instability and transient growth in flow over a backwards-facing step. J. Fluid Mech. 603, 271–304 (2008) · Zbl 1151.76470
[7] Boost c++ libraries
[8] Bramble, J.H., Xu, J.: A local post-processing technique for improving the accuracy in mixed finite-element approximations. SIAM J. Numer. Anal. 26(6), 1267–1275 (1989) · Zbl 0688.65061
[9] Brezzi, F., Douglas, J., Jr., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985) · Zbl 0599.65072
[10] Buffa, A., Hughes, T.J.R., Sangalli, G.: Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems. SIAM J. Numer. Anal. 44, 1420–1440 (2006). (electronic) · Zbl 1153.76038
[11] Carmo, B.S., Sherwin, S.J., Bearman, P.W., Willden, R.H.J.: Wake transition in the flow around two circular cylinders in staggered arrangements. J. Fluid Mech. 597, 1–29 (2008) · Zbl 1133.76018
[12] Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000) · Zbl 0987.65111
[13] Chen, Z.: Equivalence between and multigrid algorithms for nonconforming and mixed methods for second-order elliptic problems. Math. Comput. 4, 1–33 (1996) · Zbl 0932.65126
[14] Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) · Zbl 0383.65058
[15] Cockburn, B.: Discontinuous Galerkin methods. Z. Angew. Math. Mech. 83, 731–754 (2003) · Zbl 1036.65079
[16] Cockburn, B.: Discontinuous Galerkin methods for computational fluid dynamics. In: Borst, R., Stein, E., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3, pp. 91–123. Wiley, New York (2004)
[17] Cockburn, B., Gopalakrishnan, J.: A characterization of hybridized mixed methods for second order elliptic problems. SIAM J. Numer. Anal. 42, 283–301 (2004) · Zbl 1084.65113
[18] Cockburn, B., Gopalakrishnan, J.: Error analysis of variable degree mixed methods for elliptic problems via hybridization. Math. Comput. 74, 1653–1677 (2005) · Zbl 1078.65093
[19] Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008) · Zbl 1198.65193
[20] Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001) · Zbl 1065.76135
[21] Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31, 3827–3846 (2009) · Zbl 1200.65093
[22] Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009) · Zbl 1205.65312
[23] Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010) · Zbl 1197.65173
[24] Cockburn, B., Gopalakrishnan, J., Wang, H.: Locally conservative fluxes for the continuous Galerkin method. SIAM J. Numer. Anal. 45, 1742–1776 (2007) · Zbl 1155.65100
[25] Cockburn, B., Guzmán, J., Soon, S.-C., Stolarski, H.K.: An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems. SIAM J. Numer. Anal. 47, 2686–2707 (2009) · Zbl 1211.65153
[26] Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009) · Zbl 1198.65194
[27] Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer, Berlin (2000) · Zbl 0935.00043
[28] Comodi, M.I.: The Hellan-Herrmann-Johnson method: some new error estimates and postprocessing. Math. Comput. 52, 17–29 (1989) · Zbl 0665.65082
[29] Darekar, R., Sherwin, S.J.: Flow past a square-section cylinder with a wavy stagnation face. J. Fluid Mech. 426, 263 (2001) · Zbl 1016.76015
[30] Deville, M.O., Mund, E.H., Fischer, P.F.: High Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2002) · Zbl 1007.76001
[31] Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991) · Zbl 0742.76059
[32] Fraejis de Veubeke, B.M.: Displacement and equilibrium models in the finite element method. In: Zienkiewicz, O.C., Holister, G. (eds.) Stress Analysis, pp. 145–197. Wiley, New York (1977)
[33] Gastaldi, L., Nochetto, R.H.: Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. RAIRO Modél. Math. Anal. Numér. 23, 103–128 (1989) · Zbl 0673.65060
[34] Guermond, J.L., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41, 112–134 (2003) · Zbl 1130.76395
[35] Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, New York (1987) · Zbl 0634.73056
[36] Hughes, J.T.R., Scovazzi, G., Bochev, P.B., Buffa, A.: A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method. Comput. Methods Appl. Mech. Eng. 195, 2761–2787 (2006) · Zbl 1124.76027
[37] Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD, 2nd edn. Oxford University Press, London (2005) · Zbl 1116.76002
[38] Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97(2), 414–443 (1991) · Zbl 0738.76050
[39] Koornwinder, T.: Two-variable analogues of the classical orthogonal polynomials. In: Theory and Applications of Special Functions. Academic Press, San Diego (1975) · Zbl 0326.33002
[40] Proriol, J.: Sur une famille de polynomes á deux variables orthogonaux dans un triangle. C.R. Acad. Sci Paris 257, 2459–2461 (1957) · Zbl 0080.05204
[41] Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Method. Lecture Notes in Math., vol. 606, pp. 292–315. Springer, New York (1977) · Zbl 0362.65089
[42] Schwab, Ch.: p- and hp- Finite Element Methods: Theory and Applications to Solid and Fluid Mechanics. Oxford University Press, London (1999) · Zbl 0910.73003
[43] Sherwin, S.J.: Hierarchical hp finite elements in hybrid domains. Finite Elem. Anal. Des. 27, 109 (1997) · Zbl 0896.65074
[44] Sherwin, S.J., Karniadakis, G.E.: A triangular spectral element method; applications to the incompressible Navier-stokes equations. Comput. Methods Appl. Mech. Eng. 123, 189–229 (1995) · Zbl 1075.76621
[45] Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng. 80, 1058–1092 (2009) · Zbl 1176.74196
[46] Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988) · Zbl 0632.73063
[47] Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25, 151–167 (1991) · Zbl 0717.65081
[48] Szabó, B.A., Babuška, I.: Finite Element Analysis. Wiley, New York (1991) · Zbl 0792.73003
[49] Vos, P.E.J., Sherwin, S.J., Kirby, R.M.: From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low and high order discretisations. J. Comput. Phys. 29(13), 5161–5181 (2010) · Zbl 1194.65138
[50] Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Fluid Mechanics, vol. 3, 5th edn. Butterworth-Heinemann, Oxford (2000) · Zbl 0991.74003
[51] Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Solid Mechanics, vol. 2, 5th edn. Butterworth-Heinemann, Oxford (2000) · Zbl 0991.74003
[52] Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: The Basis, vol. 1, 5th edn. Butterworth-Heinemann, Oxford (2000) · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.