×

zbMATH — the first resource for mathematics

Extended wave solutions for a nonlinear Klein-Gordon-Zakharov system. (English) Zbl 1245.65173
Summary: The nonlinear Klein-Gordon-Zakharov (KGZ) system is used as a vehicle to employ the sine-cosine method and the extended tanh method to construct formally exact wave solutions. Each method presents various solutions with distinct formal properties and physical structures, which mainly include new periodic wave solutions, traveling wave solutions and solitary solutions. In addition, as special cases, some of new rational functions type solutions are developed and extended.

MSC:
65N99 Numerical methods for partial differential equations, boundary value problems
35Q53 KdV equations (Korteweg-de Vries equations)
Software:
MACSYMA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Texier, B., Derivation of the Zakharov equations, Arch. ration. mech. anal., 184, 1, 121-183, (2007) · Zbl 1370.35249
[2] Gan, Z., Orbital instability of standing waves for the klein – gordon – zakharov system, Adv. nonlinear stud., 8, 413-428, (2008) · Zbl 1144.35341
[3] Masmoudi, N.; Nakanishi, K., From the klein – gordon – zakharov system to the nonlinear schrodinger equation, J. hyperbolic differ. equat., 2, 4, 975-1008, (2005) · Zbl 1089.35070
[4] Shi, Q.; Wang, S.; Li, Y., Existence and uniqueness of energy solution to klein – gordon – schrodinger equations, J. differ. equat., 252, 168-180, (2012) · Zbl 1233.35180
[5] Ohta, M.; Todorova, G., Strong instability of standing waves for the nonlinear klein – gordon equation and the klein – gordon – zakharov system, SIAM J. math. anal., 38, 6, 1912-1931, (2007) · Zbl 1128.35074
[6] Zhang, J.; Gan, Z., Sharp conditions of global existence for klein – gordon – zakharov equations in three space dimensions, Adv. math., 34, 2, 241-244, (2005)
[7] Gan, Z.; Guo, B.; Zhang, Jian, Instability of standing wave, global existence and blowup for the klein – gordon – zakharov system with different-degree nonlinearities, J. differ. equat., 246, 4097-4128, (2009) · Zbl 1172.35009
[8] Zabusky, N.J.; Kruskal, M.D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. rev. lett., 15, 240-243, (1965) · Zbl 1201.35174
[9] Wang, M.L.; Zhou, Y.B., The periodic wave solutions for the klein – gordon – schröinger equations, Phys. lett. A, 318, 84-92, (2003) · Zbl 1098.81770
[10] Darwish, A.; Fan, E.G., A series of new explicit exact solutions for the coupled klein – gordon – schröinger equations, Chaos solitons fract., 20, 609-617, (2004) · Zbl 1049.35167
[11] Li, X.Y.; Yang, S.; Wang, M.L., The periodic wave solutions for the (3+1)-dimensional klein – gordon – schröinger equations, Chaos solitons fract., 25, 629-636, (2005) · Zbl 1068.35120
[12] Santanu, S.R., An application of the modified decomposition method for the solution of the coupled klein – gordon – schröinger equation, Commun. nonlinear sci. numer. simul., 13, 1311-1317, (2008) · Zbl 1221.65283
[13] Yomba, E., On exact solutions of the coupled klein – gordon – schröinger and the complex coupled KdV equations using mapping method, Chaos solitons fract., 21, 209-229, (2004) · Zbl 1046.35105
[14] Liu, S.K.; Fu, Z.T.; Liu, S.D.; Wang, Z.G., The periodic solutions for a class of coupled nonlinear klein – gordon equations, Phys. lett. A, 323, 415-420, (2004) · Zbl 1118.81399
[15] Ma, W.X.; Chen, M., Direct search for exact solutions to the nonlinear schrodinger equation, Appl. math. comput., 215, 2835-2842, (2009) · Zbl 1180.65130
[16] Ma, W.X.; Fuchssteiner, B., Explicit and exact solutions to a kolmogorov – petrovskii – piskunov equation, Int. J. nonlinear mech., 31, 329-338, (1996) · Zbl 0863.35106
[17] Ma, W.X.; Wu, H.Y.; He, J.S., Partial differential equations possessing Frobenius integrable decompositions, Phys. lett. A, 364, 29-32, (2007) · Zbl 1203.35059
[18] Wang, Y.; Xia, D., Generalized solitary wave solutions for the klein – gordon – schröinger equations, Comput. math. appl., 58, 2300-2306, (2009) · Zbl 1189.65263
[19] Shang, Y.; Huang, Y.; Yuan, W., New exact traveling wave solutions for the klein – gordon – zakharov equations, Comput. math. appl., 56, 1441-1450, (2008) · Zbl 1155.35443
[20] Kudryashov, N.A., Seven common errors in finding exact solutions of nonlinear differential equations, Commun. nonlinear sci. numer. simul., 14, 3507-3529, (2009) · Zbl 1221.35342
[21] Ma, W.X.; Fan, E., Linear superposition principle applying to Hirota bilinear equations, Comput. math. appl., 61, 950-959, (2011) · Zbl 1217.35164
[22] Ma, W.X.; Zhang, Y.; Tang, Y.N.; Tu, J.Y., Hirota bilinear equations with linear subspaces of solutions, Appl. math. comput., 218, 7174-7183, (2012) · Zbl 1245.35109
[23] Ma, W.X.; Lee, J.H., A transformed rational function method and exact solutions to the 3+1 dimensional jimbo – miwa equation, Chaos solitons fract., 42, 1356-1363, (2009) · Zbl 1198.35231
[24] Hereman, W.; Takaoka, M., Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA, J. phys. A, 23, 4805-4822, (1990) · Zbl 0719.35085
[25] Wazwaz, A.M., New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations, Chaos solitons fract., 22, 249-260, (2004) · Zbl 1062.35121
[26] Malfliet, W., The tanh method: I. exact solutions of nonlinear evolution and wave equations, Phys. scr., 54, 563-568, (1996) · Zbl 0942.35034
[27] Malfliet, W., The tanh method: II. perturbation technique for conservative systems, Phys. scr., 54, 569-575, (1996) · Zbl 0942.35035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.