×

zbMATH — the first resource for mathematics

Global convergence of a nonmonotone filter method for equality constrained optimization. (English) Zbl 1245.90092
Summary: We present a global convergence theory for a class of nonmonotone filter trust region methods. At each iteration, the trial step is decomposed into a quasi-normal step and a tangential step. Comparable to the traditional filter and monotone methods, the new approach is more flexible and less computational scale. Under some reasonable conditions, we show that there exists at least one accumulate point of the sequence of iterates that is a KKT point.

MSC:
90C26 Nonconvex programming, global optimization
65K05 Numerical mathematical programming methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Byrd, R.H.; Schnabel, R.B.; Shulta, G.A., A trust region algorithm for nonlinear constrained optimization, SIAM J. nimer. anal., 24, 1152-1170, (1987) · Zbl 0631.65068
[2] M.R. Celis, J.E. Dennis, R.A. Tapia, A trust region strategy for nonlinear equality constrained optimization, in: Numerical Optimization 1984, SIAM, Philadelphia, PA,1985. · Zbl 0566.65048
[3] EI-Alem, M., A golbal convergent thoery for dennis, EI-alem, and maciel’s class of trust region algorithms for constrained optimization without assuming regularing, SIAM J. optim., 9, 965-990, (1999) · Zbl 0957.65059
[4] Powell, M.J.D.; Yuan, Y., A trust region algorithm algorithm for equality constrained optimization, Math. program., 49, 189-211, (1991) · Zbl 0816.90121
[5] Vardi, A., A trust region algorithm for equality constrained minimization: convergent properties and implementation, SIAM J. numer. anal., 22, 575-591, (1985) · Zbl 0581.65045
[6] Dennis, J.E.; Vicente, L.N., On the convergence theory of trust region based algorithm, SIAM J. optim., 7, 927-950, (1997) · Zbl 0891.65073
[7] Fletcher, R.; Leyffer, S., Nonlinear programming without a penalty function, Math. program., 91, 2, 239-269, (2002) · Zbl 1049.90088
[8] R. Fletcher, S. Leyffer, P.L. Toint, On the global convergence of an SLP-filter algorithm, Tech.Report.NA/183, Department of Mathematics, University of Dundee, 1998. · Zbl 1029.65063
[9] Fletcher, R.; Gould, N.I.M.; Leyffer, S.; Toint, P.L.; Wachter, A., A global convergence of a trust region SQP-filter algorithm for general nonlinear programming, SIAM J. optim., 13, 635-660, (2002) · Zbl 1038.90076
[10] Fletcher, R.; Leyffer, S.; Toint, P.L., On the global convergence of a filter-SQP algorithm, SIAM J. optim., 13, 44-59, (2002) · Zbl 1029.65063
[11] Su, K.; Che, J., A modified SQP-filter method and its global convergence, Appl. math. comput., 194, 1, 92-101, (2007) · Zbl 1193.90215
[12] R. Fletcher, S. Leyffer, A bundle filter method for nonsmooth nonlinear optimization, Technical Report NA/195, Department of Mathematics, University of Dundee, Scotland, December, 1999.
[13] Wang, Z.; Zhu, D., A reduced Hessian algorithm with line search filter method for nonlinear programming, Appl. math. comput., 217, 19, 7679-7691, (2011) · Zbl 1226.65059
[14] Karas, W.; Oening, P.; Ribeiro, A., Global convergence of slanting filter methods for nonlinear programming, Appl. math. comput., 200, 2, 486-500, (2008) · Zbl 1149.65042
[15] Gu, C., Nonmonotone filter DQMM method for the system of nonlinear equations, Appl. math. comput., 217, 22, 9351-9357, (2011) · Zbl 1223.65036
[16] Chen, Z.W., A penalty-free-type nonmonotone trust region method for nonlinear constrained optimization, Appl. math. comput., 173, 1014-1046, (2006) · Zbl 1093.65058
[17] Deng, N.Y.; Xiao, Y.; Zhou, F.J., A nonmonotone trust region algorithm for equality constrained optimization, J. optim. theory appl., 76, 259-285, (1993) · Zbl 0797.90088
[18] M. EI-Alem, A global convergence theory for a class of trust region algorithms for constrained optimization, Tech.Rep.TR 88-5,Department of computational and Applied Mathematics. Rice University, Houston, Texas, USA.
[19] EI-Alem, M., A global convergence theory for the dennis-celis-tapia trust region algorithm for constrained optimization, SIAM J. numer. anal., 28, 266-290, (1991) · Zbl 0725.65061
[20] Grippo, L.; Lamparidlo, F.; Ludidi, S., A nonmonotone line search technique for newton’s method, SIAM J. numer. anal., 23, 707-716, (1986) · Zbl 0616.65067
[21] Ke, X.W.; Han, J.Y., A nonmonotone trust region algorithm for equality constrained optimization, Sci. China, 38, 683-695, (1995) · Zbl 0835.90089
[22] Ulbrich, M.; Ulbrich, S., Nonmonotone trust region methods for nonlinear equality constrained optimization without a penalty function, Math. program. ser. B, 95, 103-135, (2003) · Zbl 1030.90123
[23] Powell, M.J.D., Convergence properties of a class of minimization algorithm, (), 1-27 · Zbl 0908.65007
[24] R.H. Byrd, Robust trust region methods for constrained optimization, Third SIAM Conference on Optimization, Houston, Texas, May 1987.
[25] E.O. Omojokun, Trust region algorithms for optimization with nonlinear equality and inequality constraints, PhD thesis, University of Colorado, Boulder Colorado, USA,1989.
[26] Dennis, J.E.; EI-Alem, M.; Maciel, M.C., A global convergence theory for general trust region based algorithms for equality constrained optimization, SIAM J. optim., 7, 177-207, (1997) · Zbl 0867.65031
[27] Hock, W.; Schittkowski, K., Test examples for nonlinear programming codes, lecture notes in economics and mathematics system, no.187, (1981), Springer-Verlag
[28] Schittkowski, K., More test examples for nonlinear mathematical programming codes, lecture notes in economics and mathematics system, no.282, (1987), Springer-Verlag Berlin, Heidelberg
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.