zbMATH — the first resource for mathematics

Synchronization control for the competitive complex networks with time delay and stochastic effects. (English) Zbl 1245.93141
Summary: The synchronization control problem for the competitive complex network with time delay and stochastic effects is investigated by using the stochastic technique and Lyapunov stability theory. The competitive complex network means that the dynamical varying rate of a part of nodes is faster than other nodes. Some synchronization criteria are derived by the full controller and pinning controller, respectively, and these criteria are convenient to be used for concision. A numerical example is provided to illustrate the effectiveness of the method proposed in this paper.

93E15 Stochastic stability in control theory
93E03 Stochastic systems in control theory (general)
Full Text: DOI
[1] Wang, Y.; Wang, Z.D.; Liang, J.L., A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances, Phys lett A, 372, 6066-6073, (2008) · Zbl 1223.90013
[2] Yang, J.M.; Lu, L.P.; Xie, W.D., On competitive relationship networks: a new method for industrial competition analysis, Physica A, 382, 704-714, (2007)
[3] Lu, X.B.; Qin, B.Z., Adaptive cluster synchronization in complex dynamical networks, Phys lett A, 373, 3650-3658, (2009) · Zbl 1232.05219
[4] Hu, A.H.; Xu, Z.Y., Pinning a complex dynamical network via impulsive control, Phys lett A, 374, 186-190, (2009) · Zbl 1234.05212
[5] Yang, J.M.; Yao, C.Z.; Ma, W.C.; Chen, G.R., A study of the spreading scheme for viral marketing based on a complex network model, Physica A, 389, 859-870, (2010)
[6] Watts, D.; Strogatz, S., Collective dynamic of small world network, Nature, 393, 440-442, (1998) · Zbl 1368.05139
[7] Barabási, A.L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512, (1999) · Zbl 1226.05223
[8] Newman, M.E.J., The structure and function of complex networks, SIAM rev, 45, 167-256, (2003) · Zbl 1029.68010
[9] Wang, X.F.; Chen, G., Complex networks: small-world, scale-free and beyond, IEEE circ syst mag, 3, 6-20, (2003)
[10] Wang, X.; Li, X.; Chen, G., Theory and application of complex networks, (2006), Tsinghua University Press Beijing
[11] Zhu, H.L.; Luo, H.; Peng, H.P.; Li, L.X.; Luo, Q., Complex networks-based energy-efficient evolution model for wireless sensor networks, Chaos solitons fract, 41, 1828-1835, (2009)
[12] Gao, H.J.; Lam, J.; Chen, G.R., New criteria for synchronization stability of general complex dynamical networks with coupling delays, Phys lett A, 360, 263-273, (2006) · Zbl 1236.34069
[13] Chen, T.P.; Liu, X.W.; Lu, W.L., Pinning complex networks by a single controller, IEEE trans circ syst I-regular paper, 54, 6, 1317-1326, (2007) · Zbl 1374.93297
[14] Chen, M.Y., Chaos synchronization in complex networks, IEEE trans circ syst I-regular paper, 55, 5, 1335-1346, (2008) · Zbl 1452.62238
[15] Sun, W.; Chen, Z.; Lü, Y.B.; Chen, S.H., An intriguing hybrid synchronization phenomenon of two coupled complex networks, Appl math comput, 216, 2301-2309, (2010) · Zbl 1203.93163
[16] Huang, C.; Ho, Daniel W.C.; Lu, J.Q., Synchronization analysis of a complex network family, Nonlinear anal real world appl, 11, 1933-1945, (2010) · Zbl 1188.93009
[17] Wu, W.; Zhou, W.J.; Chen, T.P., Cluster synchronization of linearly coupled complex networks under pinning control, IEEE trans circ syst I-regular paper, 56, 4, 829-839, (2009)
[18] Yu, W.W.; Chen, G.R.; Lü, J.H., On pinning synchronization of complex dynamical networks, Automatica, 45, 429-435, (2009) · Zbl 1158.93308
[19] Wang, Q.G.; Duan, Z.S.; Chen, G.R.; Feng, Z.S., Synchronization in a class of weighted complex networks with coupling delays, Physica A, 387, 5616-5622, (2008)
[20] Tu, L.L.; Lu, J.A., Delay-dependent synchronization in general complex delayed dynamical networks, Comput math appl, 57, 28-36, (2009) · Zbl 1165.34413
[21] Zheng, S.; Bi, Q.S.; Cai, G.L., Adaptive projective synchronization in complex networks with time-varying coupling delay, Phys lett A, 373, 1553-1559, (2009) · Zbl 1228.05267
[22] Wang, B.X.; Guan, Z.H., Chaos synchronization in general complex dynamical networks with coupling delays, Nonlinear anal real world appl, 11, 1925-1932, (2010) · Zbl 1188.93096
[23] Wang, Z.D.; Wang, Y.; Liu, Y.R., Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays, IEEE trans neural netw, 21, 1, 11-25, (2010)
[24] Yang, M.; Wang, Y.W.; Xiao, J.W.; Wang, H.O., Robust synchronization of impulsively-coupled complex switched networks with parametric uncertainties and time-varying delays, Nonlinear anal real world appl, 11, 3008-3020, (2010) · Zbl 1214.93055
[25] Wang, Y.W.; Wang, H.O.; Xiao, J.W.; Guan, Z.H., Synchronization of complex dynamical networks under recoverable attacks, Automatica, 46, 197-203, (2010) · Zbl 1214.93101
[26] Zhao, J.; Hill, David J.; Liu, T., Synchronization of complex dynamical networks with switching topology: A switched system point of view, Automatica, 45, 2502-2511, (2009) · Zbl 1183.93032
[27] Peng, H.P.; Wei, N.; Li, L.X.; Xie, W.S.; Yang, Y.X., Models and synchronization of time-delayed complex dynamical networks with multi-links based on adaptive control, Phys lett A, 374, 2335-2339, (2010) · Zbl 1236.05187
[28] Khalil, H.K., Nonlinear systems, (2002), Prentice-Hall
[29] Gu, H.B., Adaptive synchronization for competitive neural networks with different time scales and stochastic perturbation, Neurocomputing, 73, 350-356, (2009)
[30] Mao, X.R., A note on the Lasalle-type theorems for stochastic differential delay equations, J math anal appl, 268, 125-142, (2002) · Zbl 0996.60064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.