zbMATH — the first resource for mathematics

On the classification of even unimodular lattices with a complex structure. (English) Zbl 1246.11094
The authors study unimodular positive definite Hermitian lattices \(L\) over the ring of integers \({\mathcal O}_K\) in the imaginary quadratic number field \(K={\mathbb Q}(\sqrt{-d})\) where \(d\) is a squarefree positive integer. Such a lattice \(L\) is a finitely generated projective \({\mathcal O}_K\)-submodule of a \(K\)-vector space \(V\) of, say, dimension \(r\) with basis \(e_1,\dots, e_r\) equipped with the Hermitian form \(h\) with \(h(e_i,e_j)=\delta_{ij}\) such that \(L\) contains a basis of \(V\) and \(h(L,L)\subseteq {\mathcal O}_K\). \(L\) being unimodular means that \(L=\{ x\in V\mid h(x,L)\subseteq {\mathcal O}_K\}\). One has \(h(x,x)\in {\mathbb Z}\) for all \(x\in L\), and \(L\) is called even if \(h(x,x)\in 2{\mathbb Z}\) for all \(x\in L\), odd otherwise.
In this paper, one assumes throughout \(r\equiv 0\bmod 4\). When \(d\equiv 3\bmod 4\), then there is only one genus \({\mathcal N}_r\) of unimodular such lattices that are necessarily odd, namely that of the standard lattice \(\bigoplus_{i=1}^r {\mathcal O}_Ke_i\). If \(d\not\equiv 3\bmod 4\), then there is in addition a genus of even unimodular such lattices denoted by \({\mathcal M}_r\). The mass \(\mu\) of a genus \({\mathcal G}\) of lattices is defined to be \(\mu ({\mathcal G})=\sum |\operatorname{Aut}(M)|^{-1}\) where \(M\) ranges over a system of representatives of the isometry classes of lattices within the genus \({\mathcal G}\). A formula for \(\mu({\mathcal N}_r)\) has been determined by K. Hashimoto and H. Koseki [TĂ´hoku Math. J., II. Ser. 41, No. 1, 1–30 (1989; Zbl 0668.10029)].
The authors first derive a formula for \(\mu({\mathcal M}_r)\) in terms of \(\mu({\mathcal N}_r)\). Using the trace \(\mathrm{Tr}\) of the extension \(K/{\mathbb Q}\), a Hermitian \({\mathcal O}_K\)-lattice \((L,h)\) can be made into a quadratic \({\mathbb Z}\)-lattice \((L,F_h)\) of rank \(2r\), where \(F_h=\mathrm{Tr}\circ h\) if \(d\equiv 3\bmod 4\) and \(F_h=\frac{1}{2}\mathrm{Tr}\circ h\) if \(d\not\equiv 3\bmod 4\). An \({\mathcal O}_K\)-lattice \((L,h)\) is called a theta lattice if \((L,F_h)\) is even unimodular. The authors derive a formula for the mass of the genus of theta lattices. They explicitly compute the values for the masses and the numbers of isometry classes of theta lattices in the cases where \(K\) has class number one and \(r=4, 8, 12\). The paper finishes with some results on the Hermitian theta series of theta lattices.

11E41 Class numbers of quadratic and Hermitian forms
11E39 Bilinear and Hermitian forms
11F03 Modular and automorphic functions
11F27 Theta series; Weil representation; theta correspondences
11H06 Lattices and convex bodies (number-theoretic aspects)
Full Text: DOI
[1] DOI: 10.1080/10586458.1997.10504603 · Zbl 0886.11021 · doi:10.1080/10586458.1997.10504603
[2] Borcherds R. E., Sphere Packings, Lattices and Groups (1999)
[3] Braun H., Ann. of Math. 51 pp 82–
[4] DOI: 10.2307/1969345 · Zbl 0041.41603 · doi:10.2307/1969345
[5] DOI: 10.1006/jnth.1998.2268 · Zbl 0920.11021 · doi:10.1006/jnth.1998.2268
[6] DOI: 10.2140/pjm.1978.76.329 · Zbl 0389.10024 · doi:10.2140/pjm.1978.76.329
[7] DOI: 10.1007/978-1-4757-6568-7 · doi:10.1007/978-1-4757-6568-7
[8] DOI: 10.1007/s00229-002-0339-z · Zbl 1038.11030 · doi:10.1007/s00229-002-0339-z
[9] DOI: 10.1007/BF01451853 · Zbl 0553.10022 · doi:10.1007/BF01451853
[10] DOI: 10.2748/tmj/1178227865 · Zbl 0668.10029 · doi:10.2748/tmj/1178227865
[11] DOI: 10.1007/s12188-010-0043-y · Zbl 1229.11062 · doi:10.1007/s12188-010-0043-y
[12] DOI: 10.1007/s00013-008-3072-3 · Zbl 1213.11107 · doi:10.1007/s00013-008-3072-3
[13] DOI: 10.2969/jmsj/02130359 · Zbl 0182.07101 · doi:10.2969/jmsj/02130359
[14] DOI: 10.2307/2372982 · Zbl 0118.01901 · doi:10.2307/2372982
[15] DOI: 10.1006/jnth.2001.2749 · Zbl 1075.11048 · doi:10.1006/jnth.2001.2749
[16] Krieg A., Lecture Notes in Mathematics 1143, in: Modular Forms on the Half-Spaces of Quaternions (1985) · Zbl 0564.10032 · doi:10.1007/BFb0075946
[17] DOI: 10.1007/3-540-29593-3 · Zbl 1159.11014 · doi:10.1007/3-540-29593-3
[18] Nebe G., J. Reine Angew. Math. 531 pp 49–
[19] DOI: 10.1090/conm/249/03760 · doi:10.1090/conm/249/03760
[20] DOI: 10.1006/jsco.1998.0225 · Zbl 0936.68129 · doi:10.1006/jsco.1998.0225
[21] Taylor D. E., The Geometry of the Classical Groups (1992) · Zbl 0767.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.