×

zbMATH — the first resource for mathematics

Discussion of “Impact of frequentist and Bayesian methods on survey sampling practice: a selective appraisal” by J. N. K. Rao. (English) Zbl 1246.62017
Concerns J.N.K. Rao’s paper, ibid. 26, No. 2, 240–256 (2011; Zbl 1246.62061).

MSC:
62D05 Sampling theory, sample surveys
62F15 Bayesian inference
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Citro, C. and Kalton, G., eds. (2000). Small-Area Estimates of School-Age Children in Poverty: Evaluation of Current Methodology . National Academies Press, Washington, DC.
[2] Deville, J.-C. and Särndal, C.-E. (1992). Calibration estimators in survey sampling. J. Amer. Statist. Assoc. 87 376-382. · Zbl 0760.62010 · doi:10.2307/2290268
[3] Eltinge, J. and Yansaneh, I. (1997). Diagnostics for the formation of nonresponse adjustment cells, with an application to income nonresponse in the US Consumer Expenditure Survey. Survey Methodol. 23 33-40.
[4] Jiang, J. (2001). Goodness-of-fit tests for mixed model diagnostics. Ann. Statist. 29 1137-1164. · Zbl 1041.62062 · doi:10.1214/aos/1013699997
[5] Jiang, J., Lahiri, P. and Wu, C.-H. (2001). A generalization of the Pearson’s \chi 2 goodness-of-fit test with estimated cell frequencies. Sankhyā Ser. A 63 260-276. · Zbl 0995.62048
[6] Kang, J. D. Y. and Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statist. Sci. 22 523-539. · Zbl 1246.62073 · doi:10.1214/07-STS227
[7] Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G. and Breidt, F. J. (2008). Non-parametric small area estimation using penalized spline regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 265-286. · Zbl 05563354 · doi:10.1111/j.1467-9868.2007.00635.x
[8] Rao, J. N. K. (2003). Small Area Estimation . Wiley, Hoboken, NJ. · Zbl 1026.62003
[9] Rao, J. N. K. and Scott, A. J. (1984). On chi-squared tests for multiway contingency tables with cell proportions estimated from survey data. Ann. Statist. 12 46-60. · Zbl 0622.62059 · doi:10.1214/aos/1176346391
[10] Rao, J. N. K. and Wu, C. (2010). Bayesian pseudo empirical likelihood intervals for complex surveys. J. Roy. Statist. Soc. Ser. B 72 533-544.
[11] Rao, J. N. K., Jocelyn, W. and Hidiroglou, M. A. (2003). Confidence interval coverage probabilities for regression estimators in uni-phase and two-phase sampling. J. Off. Statist. 19 17-30.
[12] Slud, E. (2003). Assessing fit of SAIPE models to Census and CPS county child-poverty rates. In Federal Committee on Statistical Methodology Research Conference Proceedings, Nov. 2003, Arlington, VA . Available at . · www.fcsm.gov
[13] Slud, E. (2004). Small area estimation errors in SAIPE using GLM versus FH models. In Survey Research Methods Proc. Amer. Statist. Assoc., Joint Statistical Meetings, Toronto . Amer. Statist. Assoc., Alexandria, VA.
[14] Slud, E. and Maiti, T. (2010). Small-area estimation based on survey data from a left-censored Fay-Herriot model. · Zbl 1221.62019
[15] Slud, E. and Thibaudeau, Y. (2010). Simultaneous calibration and nonresponse adjustment. Census Bureau CSRM Research Report #2010-03. Available at . · www.census.gov
[16] Wu, C. and Rao, J. N. K. (2006). Pseudo-empirical likelihood ratio confidence intervals for complex surveys. Canad. J. Statist. 34 359-375. · Zbl 1104.62008 · doi:10.1002/cjs.5550340301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.