×

zbMATH — the first resource for mathematics

Quantum cooling evaporation process in regular black holes. (English) Zbl 1246.83137
Summary: We investigate a universal behavior of thermodynamics and evaporation process for the regular black holes. We observe an important point where the temperature is maximum, the heat capacity is changed from negative infinity to positive infinity, and the free energy is minimum. Furthermore, this point separates the evaporation process into the early stage with negative heat capacity and the late stage with positive heat capacity. The latter represents the quantum cooling evaporation process. As a result, the whole evaporation process could be regarded as the inverse Hawking-Page phase transition.

MSC:
83C57 Black holes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hawking, S.W., Phys. rev. D, 14, 2460, (1976)
[2] ’t Hooft, G., Nucl. phys. B, 335, 138, (1990)
[3] Susskind, L.
[4] Page, D.N., New J. phys., 7, 203, (2005)
[5] Modesto, L.
[6] Koch, B.; Bleicher, M.; Hossenfelder, S.; Hewett, J.L.; Lillie, B.; Rizzo, T.G.; Alberghi, G.L.; Casadio, R.; Tronconi, A., Jhep, Phys. rev. lett., J. phys. G, 34, 767, (2007)
[7] J. Bardeen, in: Proceedings of GR5, Tbilisi, USSR, 1968, p. 174
[8] Borde, A.; Ayon-Beato, E.; Garcia, A., Phys. rev. D, Phys. rev. lett., 80, 5056, (1998)
[9] Dymnikova, I., Int. J. mod. phys. D, 5, 529, (1996)
[10] I. Domnikova, in: T. Piran, R. Ruffini, (Eds.), Proceedings of the Eighth Marcel Grossmann Meeting on General Relativity, 22-27 June 1997, World Scientific, p. 980
[11] Dymnikova, I.; Dymnikova, I.; Dymnikova, I., Gen. relativ. gravit., Class. quantum grav., Int. J. mod. phys. D, 12, 1015, (2003)
[12] Hayward, S.A., Phys. rev. lett., 96, 031103, (2006)
[13] Veneziano, G.; Gross, D.J.; Mende, P.F., Europhys. lett., Nucl. phys. B, 303, 407, (1988)
[14] Bonanno, A.; Reuter, M., Phys. rev. D, 62, 043008, (2000)
[15] Bonanno, A.; Reuter, M., Phys. rev. D, 73, 083005, (2006)
[16] Smailagic, A.; Spallucci, E.; Rizzo, T.G., J. phys. A, Jhep, 0609, 021, (2006)
[17] Myung, Y.S.; Kim, Y.W.; Park, Y.J., Jhep, 0702, 012, (2007)
[18] Hiscock, W.A.; Weems, L.D., Phys. rev. D, 41, 1142, (1990)
[19] Poisson, E., A relativistic toolkit: the mathematics of black hole mechanics, (2004), Cambridge Univ. Press, p. 176 · Zbl 1058.83002
[20] Nicolini, P.; Smailagic, A.; Spallucci, E.; Ansoldi, S.; Nicolini, P.; Smailagic, A.; Spallucci, E., Phys. lett. B, Phys. lett. B, 645, 261, (2007)
[21] Hawking, S.W.; Page, D.N., Commun. math. phys., 87, 577, (1983)
[22] Myung, Y.S.; Myung, Y.S., Phys. lett. B, Phys. lett. B, 645, 369, (2007)
[23] Chamblin, A.; Emparan, R.; Johnson, C.V.; Myers, R.C., Phys. rev. D, 60, 064018, (1999)
[24] Hiscock, W., Phys. rev. D, 23, 2813, (1981)
[25] York, J.W., Phys. rev. D, 33, 2092, (1986)
[26] Brown, J.D.; Creighton, J.; Mann, R.B., Phys. rev. D, 50, 6394, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.