zbMATH — the first resource for mathematics

A novel adaptive-gain supertwisting sliding mode controller: methodology and application. (English) Zbl 1246.93028
Summary: A novel super-twisting adaptive sliding mode control law is proposed for the control of an electropneumatic actuator. The key-point of the paper is to consider that the bounds of uncertainties and perturbations are not known. Then, the proposed control approach consists in using dynamically adapted control gains that ensure the establishment, in a finite time, of a real second order sliding mode. The important feature of the adaptation algorithm is in non-overestimating the values of the control gains. A formal proof of the finite time convergence of the closed-loop system is derived using the Lyapunov function technique. The efficiency of the controller is evaluated on an experimental set-up.

93B12 Variable structure systems
93C73 Perturbations in control/observation systems
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory
Full Text: DOI
[1] Boiko, I., Discontinuous systems, (2008), TBirkhauser Boston, USA
[2] Bouri, M.; Thomasset, D., Sliding control of an electropneumatic actuator using an integral switching surface, IEEE transactions on control systems technology, 2, 2, 368-375, (2001)
[3] Brun, X., Sesmat, S., Thomasset, D., & Scavarda, S. (1999). A comparative study between two control laws of an electopneumatic actuator. In Proceedings of the european control conference ECC’99. Karlsruhe. Germany.
[4] Brun, X.; Thomasset, D.; Bideaux, E., Influence of the process design on the control strategy: application in electropneumatic field, Control engineering practice, 10, 7, 727-735, (2002)
[5] Burton, J.A.; Zinober, A.S.I., Continuous approximation of vsc, International journal of systems sciences, 17, 875-885, (1986) · Zbl 0599.93029
[6] Chiang, M.H.; Chen, C.C.; Tsou, T.N., Large stroke and high precision pneumatic-piezoelectric hybrid positioning control using adaptive discrete variable structure control, Mechatronics, 15, 5, 523-545, (2005)
[7] Djemaï, M.; Barbot, J.P.; Busawon, K., Designing \(r\)-sliding mode control using smooth iterative manifolds, Medical journal of measurement and control, 4, 2, 86-93, (2008)
[8] Edge, K.A., The control of fluid power systems—responding to the challenge, Journal of systems and control engineering, 211, 2, 91-110, (1997)
[9] Edwards, C.; Spurgeon, S., Sliding mode control: theory and applications, (1998), Taylor & Francis Bristol, UK
[10] Filippov, A.F., Differential equations with discontinuous right-hand side, (1988), Kluwer, Dordrecht The Netherlands · Zbl 0664.34001
[11] Fridman, L., An averaging approach to chattering, IEEE transaction on automatic control, 46, 8, 1260-1265, (2001) · Zbl 1007.93010
[12] Fridman, L., Singularly perturbed analysis of chattering in relay control systems, IEEE transaction on automatic control, 47, 12, 2079-2084, (2002) · Zbl 1364.93491
[13] Fridman, L., Chattering analysis in sliding mode systems with inertial sensors, International journal of control, 76, 9/10, 906-912, (2003) · Zbl 1062.93011
[14] Girin, A., & Plestan, F. (2009). A new experimental setup for a high performance double electropneumatic actuators system. In Proceedings of the american control conference 2009. Saint-Louis, Missouri, USA.
[15] Hamiti, K.; Voda-Besançon, A.; Roux-Buisson, H., Position control of a pneumatic actuator under the influence of stiction, Control engineering practice, 4, 8, 1079-1088, (1996)
[16] Kimura, T.; Hara, S.; Fujita, T.; Kagawa, T., Feedback linearization for pneumatic actuator systems with static friction, Control engineering practice, 5, 10, 1385-1394, (1997)
[17] Kyoungkwan, A.; Shinichi, Y., Intelligent switching control of pneumatic actuator using on/off solenoid valves, Mechatronics, 15, 683-702, (2005)
[18] Laghrouche, S.; Plestan, F.; Glumineau, A., Higher order sliding mode control based on integral sliding surface, Automatica, 43, 3, 531-537, (2007) · Zbl 1137.93338
[19] Laghrouche, S., Smaoui, M., Brun, X., & Plestan, F. (2004). Second order sliding mode controller for electropneumatic actuators. In Proceedings of the american control conference 2004. Boston, Massachusetts. · Zbl 1122.93036
[20] Laghrouche, S.; Smaoui, M.; Plestan, F.; Brun, X., Higher order sliding mode control based on optimal approach of an electropneumatic actuator, International journal of control, 79, 119-131, (2006) · Zbl 1122.93036
[21] Levant, A., Higher-order sliding modes, differentiation and output-feedback control, International journal of control, 76, 9-10, 924-941, (2003) · Zbl 1049.93014
[22] Levant, A., Homogeneity approach to high-order sliding mode design, Automatica, 41, 5, 823-830, (2005) · Zbl 1093.93003
[23] Levant, A., Sliding order and sliding accuracy in sliding mode control, International journal of control, 58, 1247-1263, (1993) · Zbl 0789.93063
[24] Ming-Chang, S.; Shy-I, T., Identification and position control of a servo pneumatic cylinder, Control engineering practice, 3, 9, 1285-1290, (1995)
[25] Miyajima, T.; Fujita, T.; Sakaki, K.; Kawashima, K.; Kagawa, T., Development of a digital control system for high-performance pneumatic servo valve, Precision engineering, 31, 156-161, (2007)
[26] Moreno, J.A., & Osorio, M. (2008). A lyapunov approach to second order sliding mode controller and observers. In Proceedings of the IEEE conference on decision and control. Cancun, Mexico.
[27] Paul, A.K.; Mishra, J.K.; Radke, M.G., Reduced order sliding mode control for pneumatic actuator, IEEE transactions on control systems technology, 2, 3, 271-276, (1994)
[28] Plestan, F.; Glumineau, A.; Laghrouche, S., A new algorithm for high order sliding mode control, International journal of robust and nonlinear control, 18, 4-5, 441-453, (2008) · Zbl 1284.93063
[29] Plestan, F.; Moulay, E.; Glumineau, A., Output feedback sampling control: a robust solution based on second order sliding mode, Automatica, 46, 6, 1096-1100, (2010) · Zbl 1192.93036
[30] Plestan, F.; Shtessel, Y.; Brégeault, V.; Poznyak, A., New methodologies for adaptive sliding mode control, International journal of control, 83, 9, 1907-1919, (2010) · Zbl 1213.93031
[31] Polyakov, A.; Poznyak, A., Reaching time estimation for super-twisting second order sliding mode controller via Lyapunov function designing, IEEE transactions on automatic control, 54, 8, 1951-1955, (2009) · Zbl 1367.93127
[32] Rao, Z., & Bone, G.M. (2006). Modeling and control of a miniature servo pneumatic actuator. In Proceedings of the IEEE international conference on robotics and automation ICRA’06. Orlando, Florida, USA.
[33] Richard, E.; Scavarda, S., Comparison between linear and nonlinear control of an electropneumatic servodrive, Journal of dynamic systems, measurement, and control, 118, 245-252, (1996) · Zbl 0875.93381
[34] Schultea, H.; Hahn, H., Fuzzy state feedback gain scheduling control of servo-pneumatic actuators, Control engineering practice, 12, 5, 639-650, (2004)
[35] Sesmat, S., & Scavarda, S. (1996). Static characteristics of a three way servovalve. In Proceedings of the conference on fluid power technology. Aachen, Germany.
[36] Shearer, J.L., Study of pneumatic process in the continuous control of motion with compressed air, Transactions of the American society of mechanical engineers, 78, 233-249, (1956)
[37] Shtessel, Y.B., Moreno, J.A., Plestan, F., Fridman, L.M., & Poznyak, A.S. (2010). Super-twisting adaptive sliding mode control: a lyapunov design. In Proceedings of the IEEE conference on decision and control CDC 2010. Atlanta, Georgia, USA.
[38] Shtessel, Y.; Shkolnikov, I.; Levant, A., Smooth second order sliding modes: missile guidance application, Automatica, 43, 8, 1470-1476, (2007) · Zbl 1130.93392
[39] Slotine, J.J.E.; Li, W., Applied nonlinear control, (1991), Prentice Hall Englewood Cliffs, New Jersey, USA
[40] Smaoui, M.; Brun, X.; Thomasset, D., A study on tracking position control of electropneumatic system using backstepping design, Control engineering practice, 14, 8, 923-933, (2006)
[41] Smaoui, M., Brun, X., & Thomasset, D. (2005). A combined first and second order sliding mode approach for position and pressure control of an electropneumatic system. In Proceedings of the american control conference ACC’05. Portland, Oregon, USA.
[42] Soto-Cota, A.; Fridman, L.; Loukianov, A.; Canedo, J., Variable structure control of synchronous generator: singularly perturbed analysis, International journal of control, 79, 1, 1-13, (2006) · Zbl 1122.93317
[43] Utkin, V.; Guldner, J.; Shi, J., Sliding modes in electromechanical systems, (1999), Taylor & Francis Bristol, UK
[44] Yang, L., & Lilly, J.H. (2003). Sliding mode tracking for pneumatic muscle actuators in bicep/tricep pair configuration. In Proceedings of the american control conference ACC’03. Denver, Colorado, USA.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.