×

zbMATH — the first resource for mathematics

Some properties of weak uninorms. (English) Zbl 1247.03038
Summary: A weak uninorm is not only a generalization of a uninorm but also of a nullnorm. In this paper, we will show that, if a weak uninorm is \(\lambda \)-Archimedean, then it is an Archimedean nullnorm; and if a weak uninorm is \(e\)-Archimedean, then it is an Archimedean uninorm. Moreover, the De Morgan triples of the weak uninorms will be characterized, too.

MSC:
03B52 Fuzzy logic; logic of vagueness
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akella, P., Structure of n-uninorms, Fuzzy sets and systems, 158, 1631-1651, (2007) · Zbl 1122.03044
[2] Calvo, T.; De Baets, B.; Fodor, J., The functional equations of Frank and alsina for uninorms and nullnorms, Fuzzy sets and systems, 120, 385-394, (2001) · Zbl 0977.03026
[3] Calvo, T.; Mayor, G.; Mesiar, R., Aggregation operators: new trends and applications, (2002), Physica-Verlag New York · Zbl 0983.00020
[4] De Baets, B., Idempotent uninorms, European journal of operational research, 118, 631-642, (1999) · Zbl 0933.03071
[5] De Baets, B.; De Meyer, H.; Mesiar, R., Piecewise linear aggregation functions based on triangulation, Information sciences, 181, 466-478, (2011) · Zbl 1213.68618
[6] Dombi, J., Demorgan systems with an infinitely many negations in the strict monotone operator case, Information sciences, 181, 1440-1453, (2011) · Zbl 1229.03026
[7] Drewniak, J.; Drygaś, P., On a class of uninorms, International journal of uncertainty fuzziness knowledge-based systems, 10, 5-10, (2002) · Zbl 1053.03510
[8] Drygaś, P., On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums, Fuzzy sets and systems, 161, 149-157, (2010) · Zbl 1191.03039
[9] Fodor, J.C.; Yager, R.R.; Rybalov, A., Structure of uninorms, International journal of uncertainty fuzziness knowledge-based systems, 5, 411-427, (1997) · Zbl 1232.03015
[10] Grabisch, M.; Marichal, J.; Mesiar, R.; Pap, E., Aggregation functions, (2009), Cambridge University Press · Zbl 1196.00002
[11] Grabisch, M.; Marichal, J.; Mesiar, R.; Pap, E., Aggregation functions: means, Information sciences, 181, 1-22, (2011) · Zbl 1206.68298
[12] Grabisch, M.; Marichal, J.; Mesiar, R.; Pap, E., Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes, Information sciences, 181, 23-43, (2011) · Zbl 1206.68299
[13] Hu, S.K.; Li, Z.F., The structure of continuous uninorms, Fuzzy sets and systems, 123, 43-52, (2001)
[14] Klement, E.; Mesiar, R.; Pap, E., Triangular norms, (2000), Kluwer Academic Publishers The Netherlands · Zbl 0972.03002
[15] Li, Y.M.; Shi, Z.K., Weak uninorm aggregation operators, Information sciences, 124, 317-323, (2000) · Zbl 0954.03058
[16] Li, Y.M.; Shi, Z.K., Remarks on uninorm aggregation operators, Fuzzy sets and systems, 114, 377-380, (2000) · Zbl 0962.03052
[17] Mas, M.; Mayor, G.; Torrens, J., T-operators, International journal of uncertainty fuzziness knowledge-based systems, 7, 31-50, (1999) · Zbl 1087.03515
[18] Starczewski, J., Extended triangular norms, Information sciences, 179, 742-757, (2009) · Zbl 1165.03010
[19] Yager, R.R.; Rybalov, A., Uninorm aggregation operators, Fuzzy sets and systems, 80, 111-120, (1996) · Zbl 0871.04007
[20] Yager, R.R., On a class of weak triangular Mean operators, Information sciences, 96, 47-78, (1997) · Zbl 0916.93040
[21] Zadeh, L., Toward a generalized theory of uncertainty (GTU) - an outline, Information sciences, 172, 1-40, (2005) · Zbl 1074.94021
[22] Zadeh, L., Is there a need for fuzzy logic?, Information sciences, 178, 2751-2779, (2008) · Zbl 1148.68047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.