×

Spectral radius and Hamiltonian graphs. (English) Zbl 1247.05129

Summary: We present two sufficient conditions for a bipartite graph to be Hamiltonian and a graph to be traceable, respectively.

MSC:

05C45 Eulerian and Hamiltonian graphs
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
15A18 Eigenvalues, singular values, and eigenvectors
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Berman, A.; Zhang, X.-D., On the spectral radius of graphs with cut vertices, J. combin. theory ser. B, 83, 233-240, (2001) · Zbl 1023.05098
[2] Bondy, J.A.; Murty, U.S.R., Graph theory, vol. 244, (2008), Springer, GTM
[3] Butler, S.; Chung, F., Small spectral gap in the combinatorial Laplacian implies Hamiltonian, Ann. combin., 13, 403-412, (2010) · Zbl 1229.05193
[4] Chvátal, V., On the hamilton’s ideal’s, J. combin. theory ser. B, 12, 163-168, (1972) · Zbl 0213.50803
[5] Fiedler, M., A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czech. math. J., 25, 619-633, (1975) · Zbl 0437.15004
[6] Fiedler, M.; Nikiforov, V., Spectral radius and Hamiltonicity of graphs, Linear algebra appl., 432, 2170-2173, (2010) · Zbl 1218.05091
[7] Haemers, W.H., Interlacing eigenvalues and graphs, Linear algebra appl., 226-228, 593-616, (1995) · Zbl 0831.05044
[8] van den Heuvel, J., Hamilton cycles and eigenvalues of graphs, Linear algebra appl., 226-228, 723-730, (1995) · Zbl 0846.05059
[9] Hofmeister, M., Spectral radius and degree sequence, Math. nachr., 139, 37-44, (1988) · Zbl 0695.05046
[10] Hong, Y., A bound on the spectral radius of graphs, Linear algebra appl., 108, 135-140, (1988)
[11] Hong, Y.; Shu, J.L.; Fang, K.F., A sharp upper bound of the spectral radius of graphs, J. combin. theory ser. B, 81, 177-183, (2001) · Zbl 1024.05059
[12] Horn, R.A.; Johnson, C.R., Matrix analysis, (1985), Cambridge Univ. Press Cambridge · Zbl 0576.15001
[13] Krivelevich, M.; Sudakov, B., Sparse pseudo-random graphs are Hamiltonian, J. graph theory, 42, 17-33, (2003) · Zbl 1028.05059
[14] Liu, H.; Lu, M.; Tian, F., On the spectral radius of graphs with cut edges, Linear algebra appl., 389, 139-145, (2004) · Zbl 1053.05080
[15] Mohar, B., A domain monotonicity theorem for graphs and Hamiltonicity, Discrete appl. math., 36, 169-177, (1992) · Zbl 0765.05071
[16] Stevanović, D., The largest eigenvalue of nonregular graphs, J. combin. theory ser. B, 91, 143-146, (2004) · Zbl 1048.05061
[17] Yu, A.; Lu, M.; Tian, F., On the spectral radius of graphs, Linear algebra appl., 387, 41-49, (2004) · Zbl 1041.05051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.