×

zbMATH — the first resource for mathematics

Wave breaking of the Camassa-Holm equation. (English) Zbl 1247.35104
Summary: This paper gives a new and direct proof for H. P. McKean’s theorem [Asian J. Math. 2, No. 4, 867–874 (1998; Zbl 0959.35140)] on wave breaking of the Camassa-Holm equation. The blow-up profile is also analyzed.

MSC:
35Q35 PDEs in connection with fluid mechanics
35B44 Blow-up in context of PDEs
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183(2), 215–239 (2007) · Zbl 1105.76013
[2] Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 5(1), 1–27 (2007) · Zbl 1139.35378
[3] Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993) · Zbl 0936.35153
[4] Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier 50(2), 321–362 (2000) · Zbl 0944.00010
[5] Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165–186 (2009) · Zbl 1169.76010
[6] Fokas, A.S., Liu, Q.M.: Asymptotic integrability of water waves. Phys. Rev. Lett. 77(12), 2347–2351 (1996) · Zbl 0982.76511
[7] Fuchssteiner, B., Fokas, A.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981/1982) · Zbl 1194.37114
[8] Johnson, R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002) · Zbl 1037.76006
[9] Lenells, J.: Conservation laws of the Camassa–Holm equation. J. Phys. A 38(4), 869–880 (2005) · Zbl 1076.35100
[10] McKean, H.: Breakdown of a shallow water equation. Asian J. Math. 2, 867–874 (1998) · Zbl 0959.35140
[11] McKean, H.: Breakdown of the Camassa–Holm equation. Commun. Pure Appl. Math. 57, 416–418 (2004) · Zbl 1052.35130
[12] Whitham, G.B.: Linear and Nonlinear Waves. Wiley–Interscience, New York (1974) · Zbl 0373.76001
[13] Zhou, Y.: Wave breaking for a shallow water equation. Nonlinear Anal. 57, 137–152 (2004) · Zbl 1106.35070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.