zbMATH — the first resource for mathematics

A practical criterion of irreducibility of multi-loop Feynman integrals. (English) Zbl 1247.81314
Summary: A practical criterion for the irreducibility (with respect to integration by part identities) of a particular Feynman integral to a given set of integrals is presented. The irreducibility is shown to be related to the existence of stable (with zero gradient) points of a specially constructed polynomial.

81T18 Feynman diagrams
Full Text: DOI
[1] Chetyrkin, K.G.; Tkachov, F.V.; Tkachov, F.V., Nucl. phys. B, Phys. lett. B, 100, 65, (1981)
[2] Broadhurst, D.J.; Avdeev, L.V.; Tarasov, O.V.; Tarasov, O.V.; Smirnov, V.A.; Veretin, O.L.; Anastasiou, C.; Gehrmann, T.; Oleari, C.; Remiddi, E.; Tausk, J.B.; Smirnov, A.V.; Smirnov, V.A., Z. phys. C, Comput. phys. commun., Nucl. phys. B, Acta phys. Pol. B, Nucl. phys. B, Nucl. phys. B, 580, 577, (2000)
[3] Laporta, S.; Remiddi, E.; Mastrolia, P.; Remiddi, E., Phys. lett. B, Nucl. phys. B (proc. suppl.), 89, 76, (2000)
[4] Baikov, P.A., Phys. lett. B, 474, 385, (2000)
[5] Baikov, P.A.; Baikov, P.A., Phys. lett. B, Nucl. instrum. methods A, 389, 347, (1997)
[6] Baikov, P.A.; Smirnov, V.A., Phys. lett. B, 477, 367, (2000)
[7] Fleischer, J.; Kalmykov, M.Yu.; Kotikov, A.V., Phys. lett. B, 462, 169, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.