Jung, Eylee; Kim, Sung Hoon; Park, D. K. Condition for the superradiance modes in higher-dimensional rotating black holes with multiple angular momentum parameters. (English) Zbl 1247.83097 Phys. Lett., B 619, No. 3-4, 347-351 (2005). Summary: A condition for the existence of superradiance modes is derived for the incident scalar, electromagnetic and gravitational waves when the spacetime background is a higher-dimensional rotating black hole with multiple angular momentum parameters. The final expression of the condition is \(0<\omega<\sum_im_i\Omega_i\), where \(\Omega_i\) is an angular frequency of the black hole and \(\omega\) and \(m_i\) are the energy of the incident wave and the \(i\)th azimuthal quantum number, respectively. The physical implication of this condition in the context of brane-world scenarios is discussed. Cited in 3 Documents MSC: 83C57 Black holes Keywords:higher-dimensional rotating black holes PDF BibTeX XML Cite \textit{E. Jung} et al., Phys. Lett., B 619, No. 3--4, 347--351 (2005; Zbl 1247.83097) Full Text: DOI arXiv OpenURL References: [1] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., Phys. lett. B, 429, 263, (1998) [2] Antoniadis, L.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., Phys. lett. B, 436, 257, (1998) [3] Randall, L.; Sundrum, R., Phys. rev. lett., 83, 3370, (1999) [4] Giddings, S.B.; Thomas, T., Phys. rev. D, 65, 056010, (2002) [5] Dimopoulos, S.; Landsberg, G., Phys. rev. lett., 87, 161602, (2001) [6] Eardley, D.M.; Giddings, S.B., Phys. rev. D, 66, 044011, (2002) [7] Stojkovic, D., Phys. rev. lett., 94, 011603, (2005) [8] Jung, E.; Park, D.K. [9] Jung, E.; Kim, S.H.; Park, D.K. [10] Unruh, W.G., Phys. rev. D, 14, 3251, (1976) [11] Argyres, P.; Dimopoulos, S.; March-Russell, J., Phys. lett. B, 441, 96, (1998) [12] Banks, T.; Fischler, W. [13] Emparan, R.; Horowitz, G.T.; Myers, R.C., Phys. rev. lett., 85, 499, (2000) [14] Zel’dovich, Y.B., JETP lett., 14, 180, (1971) [15] Press, W.H.; Teukolsky, S.A., Nature, 238, 211, (1972) [16] Starobinskii, A.A., Sov. phys. JETP, 37, 28, (1973) [17] Starobinskii, A.A.; Churilov, S.M., Sov. phys. JETP, 38, 1, (1974) [18] Frolov, V.; Stojković, D., Phys. rev. D, 66, 084002, (2002) [19] Frolov, V.; Stojković, D., Phys. rev. lett., 89, 151302, (2002) [20] Frolov, V.; Stojković, D., Phys. rev. D, 67, 084004, (2003) [21] Ida, D.; Oda, K.; Park, S.C. [22] Harris, C.M.; Kanti, P. [23] Jung, E.; Kim, S.H.; Park, D.K. [24] Bekenstein, J.D., Phys. rev. D, 7, 949, (1973) [25] Myers, R.C.; Perry, M.J., Ann. phys., 172, 304, (1986) [26] Unruh, W., Phys. rev. lett., 31, 1265, (1973) [27] Chandrasekhar, S., The mathematical theory of black hole, (1983), Oxford Univ. Press New York · Zbl 0511.53076 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.