zbMATH — the first resource for mathematics

Noncommutative geometry inspired Schwarzschild black hole. (English) Zbl 1247.83113
Summary: We investigate the behavior of a noncommutative radiating Schwarzschild black hole. It is shown that coordinate noncommutativity cures usual problems encountered in the description of the terminal phase of black hole evaporation. More in detail, we find that: the evaporation end-point is a zero temperature extremal black hole even in the case of electrically neutral, non-rotating, objects; there exists a finite maximum temperature that the black hole can reach before cooling down to absolute zero; there is no curvature singularity at the origin, rather we obtain a regular de Sitter core at short distance.

83C57 Black holes
83C65 Methods of noncommutative geometry in general relativity
Full Text: DOI arXiv
[1] Hawking, S.W., Commun. math. phys., 43, 199, (1975)
[2] Padmanabhan, T., Phys. rep., 406, 49, (2005)
[3] Susskind, L., Phys. rev. lett., 71, 2367, (1993)
[4] Witten, E.; Seiberg, N.; Witten, E., Nucl. phys. B, Jhep, 9909, 032, (1999)
[5] Snyder, H.S., Phys. rev., 71, 38, (1947)
[6] Smailagic, A.; Spallucci, E., J. phys. A, 36, L467, (2003)
[7] Smailagic, A.; Spallucci, E., J. phys. A, 36, L517, (2003)
[8] Chaichian, M.; Demichev, A.; Presnajder, P.; Cho, S.; Hinterding, R.; Madore, J.; Steinacker, H., Nucl. phys. B, Int. J. mod. phys. D, 9, 161, (2000)
[9] Smailagic, A.; Spallucci, E., J. phys. A, 37, 7169, (2004)
[10] Nicolini, P.; Smailagic, A.; Spallucci, E., The fate of radiating black holes in noncommutative geometry, in: Proceedings of EPS 13 General Conference “Beyond Einstein, Physics for the 21st Century”, 11-15 July 2005, University of Bern, Bern, Switzerland
[11] Gruppuso, A., J. phys. A, 38, 2039, (2005)
[12] Nicolini, P., J. phys. A, 38, L631, (2005) · Zbl 1081.83020
[13] Smailagic, A.; Spallucci, E.; Smailagic, A.; Spallucci, E., Phys. rev. D, J. phys. A, 35, L363, (2002)
[14] Balbinot, R.; Barletta, A., Class. quantum grav., 6, 195, (1989)
[15] Balbinot, R.; Fabbri, A.; Frolov, V.; Nicolini, P.; Sutton, P.J.; Zelnikov, A.; Balbinot, R.; Fabbri, A.; Nicolini, P.; Sutton, P.J., Phys. rev. D, Phys. rev. D, 66, 024014, (2002)
[16] Aurilia, A.; Denardo, G.; Legovini, F.; Spallucci, E.; Aurilia, A.; Denardo, G.; Legovini, F.; Spallucci, E.; Aurilia, A.; Kissack, R.S.; Mann, R., Phys. lett. B, Nucl. phys. B, Phys. rev. D, 35, 2961, (1987)
[17] Frolov, V.P.; Markov, M.A.; Mukhanov, V.F., Phys. rev. D, 41, 383, (1990)
[18] Easson, D.A.; Hayward, S.A., Jhep, 0302, 037, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.