×

Comparison of approaches to quantum correction of black hole thermodynamics. (English) Zbl 1247.83114

Summary: There are several approaches to quantum gravitational corrections of black hole thermodynamics. String theory and loop quantum gravity, by direct analysis on the basis of quantum properties of black holes, show that in the entropy-area relation the leading order correction should be of log-area type. On the other hand, generalized uncertainty principle (GUP) and modified dispersion relations (MDRs) provide perturbational framework for such modifications. Although both GUP and MDRs are common features of all quantum gravity scenarios, their functional forms are quantum gravity model dependent. Since both string theory and loop quantum gravity give more reliable solution of the black hole thermodynamics, one can use their results to test approximate results of GUP and MDRs. In this Letter, we find quantum corrected black hole thermodynamics in the framework of GUP and MDR and then we compare our results with string theory solutions. This comparison suggests severe constraints on the functional form of GUP and MDRs. These constraints may reflect characteristic features of ultimate quantum gravity theory.

MSC:

83C57 Black holes
83C45 Quantization of the gravitational field
81T20 Quantum field theory on curved space or space-time backgrounds
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Gross, D.J.; Mende, P.F., Nucl. phys. B, 303, 407, (1988)
[2] Konishi, K.; Paffuti, G.; Provero, P., Phys. lett. B, 234, 276, (1990)
[3] Amati, D.; Ciafaloni, M.; Veneziano, G., Phys. lett. B, 216, 41, (1989)
[4] Rovelli, C., Living rev. relativ., 1, 1, (1998)
[5] Ashtekar, A.; Lewandowski, J.; Douglas, M.R.; Nekrasov, N.A.; Girelli, F.; Livine, E.R.; Oriti, D., Class. quantum grav., Rev. mod. phys., Nucl. phys. B, 708, 411, (2005)
[6] Gambini, R.; Pullin, J., Phys. rev. D, 59, 124021, (1999)
[7] Alfaro, J., Phys. rev. lett., 84, 2318, (2000)
[8] Amelino-Camelia, G., Phys. rev. D, 70, 107501, (2004)
[9] Amelino-Camelia, G.
[10] Amelino-Camelia, G.; Amelino-Camelia, G.; Magueijo, J.; Smolin, L.; Amelino-Camelia, G., Int. J. mod. phys. D, Nature, Phys. rev. D, Int. J. mod. phys. D, 11, 35, (2002)
[11] Hossenfelder, S.
[12] Chen, P.; Adler, R.J., Nucl. phys. B (proc. suppl.), 124, 103, (2003)
[13] Scardigli, F.; Casadio, R., Class. quantum grav., 20, 3915, (2003)
[14] Adler, R.J.; Chen, P.; Santiago, D.I., Gen. relativ. gravit., 33, 2101, (2001)
[15] Medved, A.J.M.; Vagenas, E.C., Phys. rev. D, 70, 124021, (2004)
[16] Medved, A.J.M.
[17] Medved, A.J.M., Class. quantum grav., 22, 133, (2005)
[18] Gour, G.; Medved, A.J.M.; Medved, A.J.M.; Medved, A.J.M., Class. quantum grav., Class. quantum grav., Class. quantum grav., 19, 2503, (2002) · Zbl 1003.83030
[19] Hod, S., Class. quantum grav., 21, L97, (2004) · Zbl 1061.83521
[20] Nozari, K.; Mehdipour, S.H., Mod. phys. lett. A, 20, 38, 2937, (2005)
[21] Bolen, B.; Cavaglia, M., Gen. relativ. gravit., 37, 1255, (2005)
[22] Cavaglia, M.; Das, S., Class. quantum grav., 21, 4511, (2004)
[23] Cavaglia, M., Class. quantum grav., 20, L205, (2003)
[24] Ling, Y.
[25] Christodoulou, D.; Ruffini, R., Phys. rev. D, 4, 3352, (1971)
[26] Custodio, P.S.; Horvath, J.E., Class. quantum grav., 20, L197, (2003)
[27] Lifshitz, E.M.; Pitaevskii, L.P.; Berestetskii, V.B., Landau – lifshitz course of theoretical physics, vol. 4: quantum electrodynamics, (1982), Reed Educational and Professional Publishing
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.