×

zbMATH — the first resource for mathematics

The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems. (English) Zbl 1247.90247
Summary: Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.

MSC:
90C30 Nonlinear programming
49K99 Optimality conditions
65K05 Numerical mathematical programming methods
Software:
Ipopt; Packmol; ALGENCAN
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1137/060654797 · Zbl 1151.49027
[2] DOI: 10.1007/s10589-009-9240-y · Zbl 1187.90265
[3] DOI: 10.1007/s10957-004-1861-9 · Zbl 1125.90058
[4] DOI: 10.1080/02331930500100270 · Zbl 1079.65070
[5] DOI: 10.1007/BFb0121177 · Zbl 0636.90079
[6] Bertsekas D. P., Nonlinear Programming, 2. ed. (1999) · Zbl 1015.90077
[7] DOI: 10.1007/s10589-005-1066-7 · Zbl 1101.90066
[8] DOI: 10.1007/s10107-009-0264-y · Zbl 1198.90322
[9] DOI: 10.1023/A:1019928808826 · Zbl 1031.90012
[10] DOI: 10.1007/s10589-007-9050-z · Zbl 1147.90412
[11] Buys, J. D. 1972. ”Dual algorithms for constrained optimization problems”. Leiden, the Netherlands: University of Leiden. Doctoral Diss
[12] DOI: 10.1137/1.9780898719857 · Zbl 0958.65071
[13] DOI: 10.1007/s101070100263 · Zbl 1049.90004
[14] DOI: 10.1007/s10589-007-9159-0 · Zbl 1181.90244
[15] DOI: 10.1007/s10107-002-0364-4 · Zbl 1023.90067
[16] Fletcher, R. 1987. ”Practical Methods of Optimization”. London: Academic Press. · Zbl 0905.65002
[17] DOI: 10.1093/imanum/6.3.357 · Zbl 0691.65054
[18] DOI: 10.1007/s101070050051 · Zbl 0956.90049
[19] DOI: 10.1007/BF00927673 · Zbl 0174.20705
[20] DOI: 10.1137/060667086 · Zbl 1162.90019
[21] DOI: 10.1080/10556780802124648 · Zbl 1154.90575
[22] DOI: 10.1007/s10898-009-9419-x · Zbl 1191.90069
[23] DOI: 10.1016/0022-247X(67)90163-1 · Zbl 0149.16701
[24] DOI: 10.1002/jcc.10216 · Zbl 05428910
[25] DOI: 10.1023/A:1022686919295 · Zbl 0907.90220
[26] DOI: 10.1002/jcc.21224 · Zbl 05745528
[27] Powell M. J.D., Optimization pp 283– (1969)
[28] DOI: 10.1137/S1052623497326629 · Zbl 0999.90037
[29] DOI: 10.1007/BFb0120989 · Zbl 0495.90077
[30] DOI: 10.1007/BF01580138 · Zbl 0279.90035
[31] DOI: 10.1007/s10107-004-0559-y · Zbl 1134.90542
[32] DOI: 10.1023/A:1018665102534 · Zbl 0917.90279
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.