×

zbMATH — the first resource for mathematics

Finite convergence of a projected proximal point algorithm for the generalized variational inequalities. (English) Zbl 1247.90264
Summary: In this work, we mainly establish the finite convergence of the projected proximal point algorithm for generalized variational inequalities under a weak sharp condition, which extends the corresponding result for the classical variational inequalities.

MSC:
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
90C51 Interior-point methods
PDF BibTeX Cite
Full Text: DOI
References:
[1] Burke, J.V.; Ferris, M.C., Weak sharp minima in mathematical programming, SIAM J. control optim., 31, 1340-1359, (1993) · Zbl 0791.90040
[2] Facchinei, F.; Pang, J.S., Finite-dimensional variational inequalities and complementarity problems, (2003), Springer New York · Zbl 1062.90002
[3] Farouq, N., Pseudomonotone variational inequalities: convergence of proximal methods, J. optim. theory appl., 109, 311-326, (2001) · Zbl 0993.49006
[4] Iusem, A.N., A generalized proximal point algorithm for the variational inequality problem in Hilbert space, SIAM J. optim., 8, 197-216, (1998) · Zbl 0911.90273
[5] Kiwiel, K.C., Proximal minimization methods with generalized Bergman function, SIAM J. control optim., 35, 1142-1168, (1997) · Zbl 0890.65061
[6] Konnov, I.V., Application of the proximal point method to nonmonotone equilibrium problems, J. optim. theory appl., 119, 317-333, (2003) · Zbl 1084.49009
[7] Luque, F.J., Asymptotic convergence analysis of the proximal point algorithm, SIAM J. control optim., 22, 277-293, (1984) · Zbl 0533.49028
[8] Marcotte, P.; Zhu, D., A cutting plane for quasimonotone variational inequalities, Comput. optim. appl., 20, 317-324, (2001) · Zbl 1054.90073
[9] Martinet, B., Régularisation d’inéquations variationelles par approximations successives, Rev. fr. inform. rech. oper., 4, 154-158, (1970) · Zbl 0215.21103
[10] Moreau, J.J., Decomposition orthogonale d’un espace hilbertien selon deux cones mutuellement polaires, C. R. acad. sci., 255, 238-240, (1962) · Zbl 0109.08105
[11] Noor, M.A., Some developments in general variational inequalities, Appl. math. comput., 152, 199-277, (2004) · Zbl 1134.49304
[12] Polyak, B.T., Introduction to optimization, (1987), Optimization Software Inc., Publications Division New York · Zbl 0652.49002
[13] Rockafellar, R.T., Monotone operators and the proximal point algorithm, SIAM J. control optim., 14, 877-898, (1976) · Zbl 0358.90053
[14] Xia, F.Q.; Huang, N.J., A projection – proximal point algorithm for solving generalized variational inequalities, J. optim. theory appl., 150, 98-117, (2011) · Zbl 1242.90267
[15] Xiu, N.H.; Zhang, J.Z., On finite convergence of proximal point algorithms for variational inequalities, J. math. anal. appl., 312, 148-158, (2005) · Zbl 1083.49011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.