×

Symmetric spaces approach to some fixed point results. (English) Zbl 1248.54018

The authors consider semi-metric spaces. For cones in such spaces some fixed point results are established. The problem of the existence of periodic points is also stated.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
54E25 Semimetric spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Menger, K., Untersuchungen über allgemeine, Math. annalen, 100, 75-163, (1928) · JFM 54.0622.02
[2] Chittenden, E.W., On the equivalence of ecart and voisinage, Trans. amer. math. soc., 18, 161-166, (1917) · JFM 46.0288.03
[3] Wilson, W.A., On semi-metric spaces, Amer. J. math., 53, 361-373, (1931) · JFM 57.0735.01
[4] Cicchese, M., Questioni di completezza e contrazioni in spazi metrici generalizzati, Boll. un. mat. ital., 13-A, 5, 175-179, (1976) · Zbl 0362.54023
[5] Jachymski, J.; Matkowski, J.; Światkowski, T., Nonlinear contractions on semimetric spaces, J. appl. anal., 1, 125-134, (1995) · Zbl 1295.54055
[6] Hicks, T.L.; Rhoades, B.E., Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear anal. theory, methods appl., 36, 331-334, (1999) · Zbl 0947.54022
[7] Aamri, M.; El Moutawakil, D., Common fixed points under contractive conditions in symmetric spaces, Appl. math. E-notes, 3, 156-162, (2003) · Zbl 1056.47036
[8] Aamri, M.; Bassou, A.; El Moutawakil, D., Common fixed points for weakly compatible maps in symmetric spaces with applications to probabilistic spaces, Appl. math. E-notes, 5, 171-175, (2005) · Zbl 1087.54018
[9] Zhu, J.; Cho, Y.J.; Kang, S.M., Equivalent contractive conditions in symmetric spaces, Comp. math. appl., 50, 1621-1628, (2005) · Zbl 1080.47046
[10] Miheţ, D., A note on a paper of Hicks and rhoades, Nonlinear anal. theory, methods appl., 65, 1411-1413, (2006) · Zbl 1101.54045
[11] Imdad, M.; Ali, J.; Khan, L., Coincidence and fixed points in symmetric spaces under strict contractions, J. math. anal. appl., 320, 352-360, (2006), corrections: J. Math. Anal. Appl. 329 (2007) 752 · Zbl 1098.54033
[12] Aliouche, A., A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. math. anal. appl., 322, 796-802, (2006) · Zbl 1111.47046
[13] Arshad, M.; Azam, A.; Vetro, P., Some common fixed point results in cone metric spaces, Fixed point theory appl., 2009, 11, (2009), Article ID 493965 · Zbl 1167.54313
[14] Vetro, P., Common fixed points in cone metric spaces, Rend. circ. mat. Palermo, 56, 464-468, (2007) · Zbl 1196.54086
[15] Di Bari, C.; Vetro, P., \(\varphi\)-pairs and common fixed points in cone metric spaces, Rend. circ. mat. Palermo, 57, 279-285, (2008) · Zbl 1164.54031
[16] Di Bari, C.; Vetro, P., Weakly \(\varphi\)-pairs and common fixed points in cone metric spaces, Rend. circ. mat. Palermo, 58, 125-132, (2009) · Zbl 1197.54060
[17] Włodarczyk, K.; Plebaniak, R.; Doliński, M., Cone uniform, cone locally convex and cone metric spaces, endpoints, set-valued dynamic systems and quasi-asymptotic contractions, Nonlinear anal. theory, methods appl., 67, 1668-1679, (2009) · Zbl 1203.54051
[18] Zabrejko, V., \(K\)-metric and \(K\)-normed spaces: a survey, Collect. math., 48, 4-6, 825-859, (1997) · Zbl 0892.46002
[19] Janković, S.; Kadelburg, Z.; Radenović, S., Remarks on cone metric spaces and fixed point theorems for contractive mappings, Nonlinear anal. theory, methods appl., 74, 2591-2601, (2011) · Zbl 1221.54059
[20] Radenović, S.; Kadelburg, Z., Quasi-contractions on symmetric and cone symmetric spaces, Banach J. math. anal., 5, 1, 38-50, (2011) · Zbl 1297.54058
[21] Khamsi, M.A., Remarks on cone metric spaces and fixed point theorems for contractive mappings, Fixed point theory appl., 2010, 7, (2010), Article ID 315398 · Zbl 1194.54065
[22] Jovanović, M.; Kadelburg, Z.; Radenović, S., Common fixed point results in metric type spaces, Fixed point theory appl., 2010, 15, (2010), Article ID 978121 · Zbl 1207.54058
[23] Branciari, A., A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. math. math. sci., 29, 531-536, (2002) · Zbl 0993.54040
[24] Zhang, X., Common fixed point theorem for new generalized contractive type mappings, J. math. anal. appl., 333, 780-786, (2007) · Zbl 1133.54028
[25] Aliouche, A., Common fixed point theorems Gregus type for weakly compatible mappings satisfying generalized contractive condition of integral type, J. math. anal. appl., 341, 707-719, (2008) · Zbl 1138.54031
[26] Di Bari, C.; Vetro, C., Common fixed point theorems for weakly compatible maps satisfying a general contractive condition, Int. J math. math. sci., 8, (2008), Art. ID 891375 · Zbl 1151.54340
[27] Cho, S.-H.; Lee, G.-Y.; Bae, J.-S., On coincidence and fixed-point theorems in symmetric spaces, Fixed point theory appl., 2008, 9, (2008), Article ID 562130
[28] Borges, C.J.R., On continuously semimetrizable and stratifiable spaces, Proc. amer. math. soc., 24, 193-196, (1970) · Zbl 0185.26501
[29] Galvin, F.; Shore, S.D., Completeness in semimetric spaces, Pacific J math., 113, 1, 67-75, (1984) · Zbl 0558.54019
[30] Heath, R.W., A regular semi-metric space for which there is no semi-metric under which all spheres are open, Proc. amer. math. soc., 12, 810-811, (1961) · Zbl 0116.14303
[31] Adamović, D., Solution of problem no. 236, Mat. vesnik, 9, 24, 420, (1972), 4
[32] Aranelović, I.D.; Petković, D.S., A note on some fixed point results, Appl. math. E-notes, 9, 254-261, (2009) · Zbl 1185.54040
[33] Aranelović, I.D.; Petković, D.S., On some topological properties of semi-metric spaces related to fixed-point theory, Int. math. forum, 4, 44, 2157-2160, (2009) · Zbl 1191.54019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.