×

zbMATH — the first resource for mathematics

Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). (English) Zbl 1248.62156
Summary: Structured additive regression models are perhaps the most commonly used class of models in statistical applications. They include, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regressions, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models, where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.

MSC:
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F15 Bayesian inference
65Y05 Parallel numerical computation
65D99 Numerical approximation and computational geometry (primarily algorithms)
65C60 Computational problems in statistics (MSC2010)
62J12 Generalized linear models (logistic models)
62M40 Random fields; image analysis
PDF BibTeX Cite
Full Text: DOI
References:
[1] Ainsworth, Approximate inference for disease mapping, Computnl Statist. Data Anal. 50 pp 2552– (2006)
[2] Albert, Bayesian analysis of binary and polychotomous response data, J. Am. Statist. Ass. 88 pp 669– (1993) · Zbl 0774.62031
[3] Attias, Proc. 15th Conf. Uncertainty in Artificial Intelligence pp 21– (1999)
[4] Attias, A variational Bayesian framework for graphical models, Adv. Neur. Informn Process. Syst. 12 pp 209– (2000)
[5] Azzalini, Statistical applications of the multivariate skew normal distribution, J. R. Statist. Soc. B 61 pp 579– (1999) · Zbl 0924.62050
[6] Banerjee, Hierarchical Modeling and Analysis for Spatial Data (2004) · Zbl 1053.62105
[7] Banerjee, Gaussian predictive process models for large spatial data sets, J. R. Statist. Soc. B 70 pp 825– (2008) · Zbl 05563371
[8] Beal, M. J. (2003) Variational algorithms for approximate Bayesian inference. PhD Thesis. University College London, London.
[9] Besag, Bayesian computation and stochastic systems (with discussion), Statist. Sci. 10 pp 3– (1995)
[10] Besag, Bayesian image restoration with two applications in spatial statistics (with discussion), Ann. Inst. Statist. Math. 43 pp 1– (1991) · Zbl 0760.62029
[11] Beskos, Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion), J. R. Statist. Soc. B 68 pp 333– (2006) · Zbl 1100.62079
[12] Bishop, Pattern Recognition and Machine Learning (2006)
[13] Box, On the experimental attainment of optimum conditions (with discussion), J. R. Statist. Soc. B 13 pp 1– (1951) · Zbl 0043.34402
[14] Breslow, Approximate inference in generalized linear mixed models, J. Am. Statist. Ass. 88 pp 9– (1993) · Zbl 0775.62195
[15] Brix, Spatiotemporal prediction for log-Gaussian Cox processes, J. R. Statist. Soc. B 63 pp 823– (2001) · Zbl 0996.62076
[16] Brix, Space-time multi type log Gaussian Cox processes with a view to modelling weeds, Scand. J. Statist. 28 pp 471– (2001) · Zbl 0981.62079
[17] Carter, On Gibbs sampling for state space models, Biometrika 81 pp 541– (1994) · Zbl 0809.62087
[18] Chib, Markov chain Monte Carlo methods for stochastic volatility models, J. Econometr. 108 pp 281– (2002) · Zbl 1099.62539
[19] Chu, Gaussian processes for ordinal regression, J. Mach. Learn. Res. 6 pp 1019– (2005) · Zbl 1222.68170
[20] Cressie, Statistics for Spatial Data (1993) · Zbl 1347.62005
[21] Cressie, Fixed rank kriging for very large spatial data sets, J. R. Statist. Soc. B 70 pp 209– (2008) · Zbl 05563351
[22] Czado (2007)
[23] Dey, D. K., Ghosh, S. K. and Mallick, B. K. (eds) (2000) Generalized Linear Models: a Bayesian Perspective. Boca Raton: Chapman and Hall-CRC. · Zbl 1006.00009
[24] Diggle, Model-based Geostatistics (2006)
[25] Durbin, Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives (with discussion), J. R. Statist. Soc. B 62 pp 3– (2000) · Zbl 0945.62084
[26] Eidsvik, Approximate Bayesian inference in spatial generalized linear mixed models, Scand. J. Statist. (2009)
[27] Fahrmeir, Bayesian inference for generalized additive mixed models based on Markov random field priors, Appl. Statist. 50 pp 201– (2001)
[28] Fahrmeir, Multivariate Statistical Modelling based on Generalized Linear Models (2001) · Zbl 0980.62052
[29] Finkenstadt, B., Held, L. and Isham, V. (eds) (2006) Statistical Methods for Spatio-temporal Systems. Boca Raton: Chapman and Hall-CRC.
[30] Friel, Recursive computing and simulation-free inference for general factorizable models, Biometrika 94 pp 661– (2007) · Zbl 1135.62078
[31] Frühwirth-Schnatter, Auxiliary mixture sampling with applications to logistic models, Computnl Statist. Data Anal. 51 pp 3509– (2007) · Zbl 1161.62387
[32] Frühwirth-Schnatter, Auxiliary mixture sampling for parameter-driven models of time series of small counts with applications to state space modelling, Biometrika 93 pp 827– (2006) · Zbl 1436.62421
[33] Gamerman, Sampling from the posterior distribution in generalized linear mixed models, Statist. Comput. 7 pp 57– (1997)
[34] Gamerman, Markov chain Monte Carlo for dynamic generalised linear models, Biometrika 85 pp 215– (1998) · Zbl 0904.62083
[35] Gelfand, Markov Chain Monte Carlo in Practice pp 145– (1996)
[36] Gelman, Bayesian Data Analysis (2004) · Zbl 1117.62343
[37] Gneiting, Nonseparable, stationary covariance functions for space-time data, J. Am. Statist. Ass. 97 pp 590– (2002) · Zbl 1073.62593
[38] Gneiting, Strictly proper scoring rules, prediction, and estimation, J. Am. Statist. Ass. 102 pp 359– (2007) · Zbl 1284.62093
[39] Gschløssl, Modelling count data with overdispersion and spatial effects, Statist. Pap. 49 pp 531– (2008)
[40] Held, Towards joint disease mapping, Statist. Meth. Med. Res. 14 pp 61– (2005) · Zbl 1057.62100
[41] Hinton, Proc. 6th A. Conf. Computational Learning Theory, Santa Cruz pp 5– (1993)
[42] Holmes, Bayesian auxiliary variable models for binary and multinomial regression, Bayes. Anal. 1 pp 145– (2006) · Zbl 1331.62142
[43] Hsiao, Bayesian marginal inference via candidate’s formula, Statist. Comput. 14 pp 59– (2004)
[44] Humphreys, Proc. Computational Statistics 2000 pp 331– (2000)
[45] Jordan, Graphical models, Statist. Sci. 19 pp 140– (2004)
[46] Kammann, Geoadditive models, Appl. Statist. 52 pp 1– (2003)
[47] Kass, Essays in Honor of George Bernard pp 473– (1999)
[48] Kass, Approximate Bayes factors and orthogonal parameters, with application to testing equality of two binomial proportions, J. R. Statist. Soc. B 54 pp 129– (1992) · Zbl 0777.62032
[49] Kitagawa, Smoothness priors analysis of time series, Lect. Notes Statist. 116 (1996) · Zbl 0853.62069
[50] Knorr-Held, Conditional prior proposals in dynamic models, Scand. J. Statist. 26 pp 129– (1999) · Zbl 0924.65152
[51] Knorr-Held, Disease mapping of stage-specific cancer incidence data, Biometrics 58 pp 492– (2002) · Zbl 1210.62173
[52] Knorr-Held, On block updating in Markov random field models for disease mapping, Scand. J. Statist. 29 pp 597– (2002) · Zbl 1039.62092
[53] Kohn, A new algorithm for spline smoothing based on smoothing a stochastic process, SIAM J. Scient. Statist. Comput. 8 pp 33– (1987) · Zbl 0627.65010
[54] Kuss, Assessing approximate inference for binary Gaussian process classification, J. Mach. Learn. Res. 6 pp 1679– (2005) · Zbl 1190.62119
[55] Lang, Bayesian P-splines, J. Computnl Graph. Statist. 13 pp 183– (2004)
[56] Mackay (1995)
[57] Mackay (1997)
[58] Marroquin, Gauss-Markov measure field models for low-level vision, IEEE Trans. Pattn Anal. Mach. Intell. 23 pp 337– (2001)
[59] Martino, S. (2007) Approximate Bayesian inference for latent Gaussian models. PhD Thesis. Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim.
[60] Martino (2008)
[61] Minka, Expectation propagation for approximate Bayesian inference, Uncertnty Artif. Intell. 17 pp 362– (2001)
[62] Møller, Log Gaussian Cox processes, Scand. J. Statist. 25 pp 451– (1998)
[63] Møller, Statistical Inference and Simulation for Spatial Point Processes (2003) · Zbl 1039.62089
[64] Neal, Bayesian Statistics 6 pp 475– (1998)
[65] O’Hagan, Curve fitting and optimal design for prediction (with discussion), J. R. Statist. Soc. B 40 pp 1– (1978)
[66] Papaspiliopoulos, A general framework for the parameterization of hierarchical models, Statist. Sci. 22 pp 59– (2007) · Zbl 1246.62195
[67] Pettit, The conditional predictive ordinate for the normal distribution, J. R. Statist. Soc. B 52 pp 175– (1990) · Zbl 0699.62031
[68] Rasmussen, Gaussian Processes for Machine Learning (2006) · Zbl 1177.68165
[69] R Development Core Team, R: a Language and Environment for Statistical Computing (2007)
[70] Rellier, Proc. 16th Int. Conf. Pattern Recognition pp 692– (2002)
[71] Robert, Monte Carlo Statistical Methods (1999) · Zbl 0935.62005
[72] Rue, Fast sampling of Gaussian Markov random fields, J. R. Statist. Soc. B 63 pp 325– (2001) · Zbl 0979.62075
[73] Rue, Gaussian Markov Random Fields: Theory and Applications (2005)
[74] Rue, Approximate Bayesian inference for hierarchical Gaussian Markov random fields models, J. Statist. Planng Inf. 137 pp 3177– (2007) · Zbl 1114.62025
[75] Rue, Approximating hidden Gaussian Markov random fields, J. R. Statist. Soc. B 66 pp 877– (2004) · Zbl 1068.62098
[76] Sanchez, Very large fractional factorials and central composite designs, ACM Trans. Modlng Comput. Simuln 15 pp 362– (2005) · Zbl 1458.62179
[77] Schervish, Theory of Statistics (1995)
[78] Shephard, Partial non-Gaussian state space, Biometrika 81 pp 115– (1994) · Zbl 0796.62079
[79] Shephard, Likelihood analysis of non-Gaussian measurement time series, Biometrika 84 pp 653– (1997) · Zbl 0888.62095
[80] Shun, Laplace approximation of high dimensional integrals, J. R. Statist. Soc. B 57 pp 749– (1995) · Zbl 0826.41026
[81] Smith, Progress with numerical and graphical methods for practical Bayesian statistics, Statistician 36 pp 75– (1987)
[82] Spiegelhalter, Bayesian measures of model complexity and fit (with discussion), J. R. Statist. Soc. B 64 pp 583– (2002) · Zbl 1067.62010
[83] Terzopoulos, The computation of visible-surface representations, IEEE Trans. Pattn Anal. Mach. Intell. 10 pp 417– (1988) · Zbl 0669.65009
[84] Thall, Some covariance models for longitudinal count data with overdispersion, Biometrics 46 pp 657– (1990) · Zbl 0712.62048
[85] Thomas, Making BUGS open, R News 6 pp 12– (2006)
[86] Tierney, Accurate approximations for posterior moments and marginal densities, J. Am. Statist. Ass. 81 pp 82– (1986) · Zbl 0587.62067
[87] Titterington, Bayesian methods for neural networks and related models, Statist. Sci. 19 pp 128– (2004) · Zbl 1057.62078
[88] Waagepetersen, An estimating function approach to inference for inhomogeneous Neyman-Scott processes, Biometrics 63 pp 252– (2007) · Zbl 1122.62073
[89] Wahba, Improper priors, spline smoothing and the problem of guarding against model errors in regression, J. R. Statist. Soc. B 40 pp 364– (1978) · Zbl 0407.62048
[90] Wakefield, Disease mapping and spatial regression with count data, Biostatistics 8 pp 158– (2007) · Zbl 1213.62178
[91] Wakefield, Spatial Epidemiology: Methods and Applications pp 104– (2000)
[92] Wang, Proc. 10th Int. Wrkshp Artificial Intelligence and Statistics pp 373– (2005)
[93] Wang, Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model, Bayes. Anal. 1 pp 625– (2006) · Zbl 1331.62168
[94] Wecker, The signal extraction approach to nonlinear regression and spline smoothing, J. Am. Statist. Ass. 78 pp 81– (1983) · Zbl 0536.62071
[95] Weir, Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data, Appl. Statist. 49 pp 473– (2000) · Zbl 0965.62099
[96] West, Bayesian Forecasting and Dynamic Models (1997) · Zbl 0871.62026
[97] Williams, Bayesian classification with Gaussian processes, IEEE Trans. Pattn Anal. Mach. Intell. 20 pp 1342– (1998)
[98] Zoeter, Proc. 10th Int. Wrkshp Artificial Intelligence and Statistics pp 445– (2005)
[99] Baladandayuthapani, Spatially adaptive Bayesian penalized regression splines (P-splines), J. Computnl Graph. Statist. 14 pp 378– (2005)
[100] Banerjee, Gaussian predictive process models for large spatial data sets, J. R. Statist. Soc. B 70 pp 825– (2008) · Zbl 05563371
[101] Barndorff-Nielsen, On a formula for the distribution of the maximum likelihood estimator, Biometrika 70 pp 343– (1983) · Zbl 0532.62006
[102] Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Statist. 24 pp 1– (1997) · Zbl 0934.62109
[103] Besag, A candidate’s formula: a curious result in Bayesian prediction, Biometrika 76 pp 183– (1989) · Zbl 0664.62028
[104] Besag, Discussion on ’Representations of knowledge in complex systems’ (by U. Grenander and M. I. Miller), J. R. Statist. Soc. B 56 pp 591– (1994)
[105] Besag, Bayesian computation and stochastic systems, Statist. Sci. 10 pp 3– (1995) · Zbl 0955.62552
[106] Beskos, Exact and computationally efficient likelihood-based inference for discretely observed diffusions (with discussion), J. R. Statist. Soc. B 68 pp 333– (2006) · Zbl 1100.62079
[107] Bhattacharya, Importance re-sampling MCMC for cross-validation in inverse problems, Bayes. Anal. 2 pp 385– (2007) · Zbl 1331.86025
[108] Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Econometr. 31 pp 307– (1986)
[109] Box, Sampling and Bayes’ inference in scientific modelling and robustness (with discussion), J. R. Statist. Soc. A 143 pp 383– (1980) · Zbl 0471.62036
[110] Brezger, Adaptive Gaussian Markov random fields with applications in human brain mapping, Appl. Statist. 56 pp 327– (2007)
[111] Castillo, GLM-methods for volatility models, Statist. Modllng (2008)
[112] Chaudhuri, SiZer for exploration of structures in curves, J. Am. Statist. Ass. 94 pp 807– (1999) · Zbl 1072.62556
[113] Chib, Markov Chain Monte Carlo methods for stochastic volatility models, J. Econometr. 108 pp 281– (2002) · Zbl 1099.62539
[114] Christensen, Scaling limits for the transient phase of local Metropolis-Hastings algorithms, J. R. Statist. Soc. B 67 pp 253– (2005) · Zbl 1075.65012
[115] Christensen, Bayesian analysis of spatial GLMM using partially non-centered MCMC method, J. Computnl Graph. Statist. 15 pp 1– (2006)
[116] Cox, Parameter orthogonality and approximate conditional inference (with discussion), J. R. Statist. Soc. B 49 pp 1– (1987) · Zbl 0616.62006
[117] Crainiceanu, Spatially adaptive Bayesian penalized splines with heteroscedastic errors, J. Computnl Graph. Statist. 16 pp 265– (2007)
[118] Diggle, Model-based Geostatistics (2006)
[119] Doucet, A., de Freitas, N. and Gordon, N. (eds) (2001) Sequential Monte Carlo Methods in Practice. New York: Springer. · Zbl 0967.00022
[120] Durbin, Monte Carlo maximum likelihood estimation for non-Gaussian state space model, Biometrika 84 pp 669– (1997) · Zbl 0888.62086
[121] Durbin, Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives (with discussion), J. R. Statist. Soc. B 62 pp 3– (2000) · Zbl 0945.62084
[122] Fahrmeir, Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models, J. Am. Statist. Ass. 87 pp 501– (1992) · Zbl 0781.62147
[123] Fahrmeir, Propriety of posteriors in structured additive regression models: theory and empirical evidence, J. Statist. Planng Inf. 139 pp 843– (2009) · Zbl 1156.62029
[124] Fahrmeir, Penalized structured additive regression: a Bayesian perspective, Statist. Sin. 14 pp 731– (2004) · Zbl 1073.62025
[125] Fuentes, Approximate likelihood for large irregularly spaced spatial data, J. Am. Statist. Ass. 102 pp 321– (2007) · Zbl 1284.62589
[126] Gaetan, Smoothing sample extremes with dynamic models, Extremes 7 pp 221– (2004) · Zbl 1090.62047
[127] Gelman, Iterative and non-iterative simulation algorithms, Comput. Sci. Statist. 24 pp 433– (1991)
[128] Gelman, Prior distributions for variance parameters in hierarchical models, Bayes. Anal. 1 pp 1– (2006) · Zbl 1331.62139
[129] Geyer, Constrained Monte Carlo maximum likelihood for dependent data (with discussion), J. R. Statist. Soc. B 54 pp 657– (1992)
[130] Gneiting, Assessing probabilistic forecasts of multivariate quantities, with applications to ensemble predictions of surface winds, Test 17 pp 211– (2008) · Zbl 1196.62091
[131] Goldstein, League tables and their limitations: statistical issues in comparisons of institutional performance, J. R. Statist. Soc. A 159 pp 385– (1996)
[132] Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation (2000) · Zbl 0958.65028
[133] Hadziavdic, V. , Thon, K. , Øigård, T. A. and Godtliebsen, F. (2008) Bayesian multiscale analysis for digital images. To be published.
[134] Hannig, Advanced distribution theory for SiZer, J. Am. Statist. Ass. 101 pp 484– (2006) · Zbl 1119.62300
[135] Harvey, Estimation of an asymmetric stochastic volatility model for asset returns, J. Bus. Econ. Statist. 14 pp 429– (1996)
[136] Haslett, Bayesian palaeoclimate reconstruction (with discussion), J. R. Statist. Soc. A 169 pp 395– (2006)
[137] Held, Simultaneous posterior probability statements from Monte Carlo output, J. Computnl Graph. Statist. 13 pp 20– (2004)
[138] Humphreys, Proc. Computational Statistics 2000 pp 331– (2000)
[139] Jaakkola, Bayesian parameter estimation via variational methods, Statist. Comput. 10 pp 25– (2000)
[140] Jang, A comparison of the hierarchical likelihood and Bayesian approaches to spatial epidemiological modelling, Environmetrics 18 pp 809– (2007)
[141] Jungbacker, Monte Carlo estimation for nonlinear non-Gaussian state space models, Biometrika 94 pp 827– (2007) · Zbl 1156.62350
[142] Kass, Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes), J. Am. Statist. Ass. 84 pp 717– (1989)
[143] Kass, Approximate Bayes factors and orthogonal parameters, with application to testing equality of two binomial proportions, J. R. Statist. Soc. B 54 pp 129– (1992) · Zbl 0777.62032
[144] Kauermann, Penalised spline in multivariable survival models with varying coefficients, Computnl Statist. Data Anal. 49 pp 169– (2005)
[145] Kim, Stochastic volatility: likelihood inference and comparison with arch models, Rev. Econ. Stud. 65 pp 361– (1998) · Zbl 0910.90067
[146] Kneib, Structured additive regression for categorical space-time data: a mixed model approach, Biometrics 62 pp 109– (2006) · Zbl 1091.62077
[147] Kneib, A mixed model approach for geoadditive hazard regression, Scand. J. Statist. 34 pp 207– (2007) · Zbl 1142.62073
[148] Knorr-Held, On block updating in Markov random field models for disease mapping, Scand. J. Statist. 29 pp 597– (2002) · Zbl 1039.62092
[149] Krivobokova, Fast adaptive penalized splines, J. Computnl Graph. Statist. 17 pp 1– (2008)
[150] Kuss, Assessing approximate inference for binary Gaussian process classification, J. Mach. Learn. Res. 6 pp 1679– (2005) · Zbl 1190.62119
[151] Lang, Bayesian P-splines, J. Computnl Graph. Statist. 13 pp 183– (2004)
[152] Lang, Function estimation with locally adaptive dynamic models, Computnl Statist. 17 pp 479– (2002)
[153] Lee, Hierarchical generalized linear models (with discussion), J. R. Statist. Soc. B 58 pp 619– (1996) · Zbl 0880.62076
[154] Lee, Hierarchical generalized linear models: a synthesis of generalized linear models, random-effect model and structured dispersion, Biometrika 88 pp 987– (2001)
[155] Lee, Modelling and analysing correlated non-normal data, Statist. Modllng 1 pp 3– (2001) · Zbl 1004.62080
[156] Lee, Double hierarchical generalized linear models (with discussion), Appl. Statist. 55 pp 139– (2006) · Zbl 05188732
[157] Lindgren, Explicit construction of GMRF approximations to generalised Matérn fields on irregular grids, Scand. J. Statist. 35 pp 691– (2007)
[158] Liu, Posterior bimodality in the balanced one-way random-effects model, J. R. Statist. Soc. B 65 pp 247– (2003) · Zbl 1063.62100
[159] Martino, Technical Report 2 (2008)
[160] Matérn, Spatial variation, Lect. Notes Statist. 36 (1986)
[161] McCausland, W. J . (2008) The Hessian method (highly efficient state smoothing, in a nutshell). Report 2008-03. Département de Sciences Économiques, Université de Montréal, Montréal.
[162] McGrory, Variational Bayes for estimating the parameters of a hidden Potts model, Statist. Comput. (2008)
[163] Mengersen, Bayesian Statistics 7 (2003)
[164] Minka (2001)
[165] Möller, Log-Gaussian Cox processes, Scand. J. Statist. 25 pp 451– (1998)
[166] Naylor, Applications of a method for the efficient computation of posterior distributions, Appl. Statist. 31 pp 214– (1982) · Zbl 0521.65017
[167] Naylor, Technical Report (2008)
[168] Neal, Annealed importance sampling, Statist. Comput. 11 pp 125– (2001)
[169] Nickisch, Approximations for binary gaussian process classification, J. Mach. Learn. Res. 9 pp 2035– (2008) · Zbl 1225.62087
[170] Noh, Robust modelling for inference from generalized linear model classes, J. Am. Statist. Ass. 102 pp 1059– (2007) · Zbl 1334.62142
[171] Noh, REML estimation for binary data in GLMMs, J. Multiv. Anal. 98 pp 896– (2007) · Zbl 1113.62087
[172] Noh, Robust ascertainment-adjusted parameter estimation, Genet. Epidem. 29 pp 68– (2005)
[173] Nott, D. J. , Kohn, R. and Fielding, M. Approximating the marginal likelihood using copula. Working Paper. (Available from http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.5474v1.pdf.)
[174] Øigåd, Bayesian multiscale analysis for time series data, Computnl Statist. Data Anal. 51 pp 1719– (2006)
[175] Opper, Advances in Neural Information Processing Systems 21 (2009)
[176] Opper, Gaussian processes for classification: mean-field algorithms, Neur. Computn 12 pp 2665– (2000)
[177] Ormerod, PhD Thesis (2008)
[178] Ormerod, Proc. 9th Iranian Statistics Conf., Isfahan pp 450– (2008)
[179] Pettitt, A conditional autoregressive Gaussian process for irregularly spaced multivariate data, Statist. Comput. 12 pp 353– (2002)
[180] Polson, Practical filtering with sequential parameter learning, J. R. Statist. Soc. B 70 pp 413– (2008) · Zbl 1351.62177
[181] Rasmussen, Gaussian Processes for Machine Learning (2006) · Zbl 1177.68165
[182] Reich, Spatial analyses of periodontal data using conditionally autoregressive priors having two types of neighbor relationships, J. Am. Statist. Ass. 102 pp 44– (2007) · Zbl 1284.62669
[183] Rigby, Generalized additive models for location, scale and shape (with discussion), Appl. Statist. 54 pp 507– (2005) · Zbl 05188697
[184] Robert, L’Analyse Statistique Bayésienne (1992)
[185] Robert, The Bayesian Choice (1994)
[186] Roberts, Optimal scaling for various Metropolis-Hastings algorithms, Statist. Sci. 16 pp 351– (2001) · Zbl 1127.65305
[187] Roberts, Variance-bounding Markov chains, Ann. Appl. Probab. 18 pp 1201– (2007) · Zbl 1142.60047
[188] Roberts, Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms, Biometrika 83 pp 95– (1996) · Zbl 0888.60064
[189] Roberts, Exponential convergence of Langevin diffusions and their discrete approximations, Bernoulli 2 pp 341– (1996) · Zbl 0870.60027
[190] Rue, Fast sampling of Gaussian Markov random fields, J. R. Statist. Soc. B 63 pp 325– (2001) · Zbl 0979.62075
[191] Rue, Gaussian Markov Random Fields: Theory and Applications (2005) · Zbl 1093.60003
[192] Rue, Approximate Bayesian inference for hierarchical Gaussian Markov random fields models, J. Statist. Planng Inf. 137 pp 3177– (2007) · Zbl 1114.62025
[193] Rue, Approximating hidden Gaussian Markov random fields, J. R. Statist. Soc. B 66 pp 877– (2004) · Zbl 1068.62098
[194] Rue, Fitting Gaussian Markov random fields to Gaussian fields, Scand. J. Statist. 29 pp 31– (2002) · Zbl 1017.62088
[195] Ruppert, Semiparametric Regression (2003) · Zbl 1038.62042
[196] Saad, Iterative Methods for Sparse Linear Systems (2003) · Zbl 1031.65046
[197] Sahu, High resolution space-time ozone modeling for assessing trends, J. Am. Statist. Ass. 102 pp 1221– (2007) · Zbl 1332.86014
[198] Salter-Townshend, M. (2008) Fast approximate inverse Bayesian inference in non-parametric multivariate regression. PhD Thesis.Trinity College, Dublin.
[199] Sampson, Nonparametric estimation of nonstationary spatial covariance structure, J. Am. Statist. Ass. 87 pp 108– (1992)
[200] Seeger, Bayesian inference and optimal design for the sparse linear model, J. Mach. Learn. Res. 9 pp 759– (2008) · Zbl 1225.68213
[201] Shen, Laplace approximation of high dimensional integrals, J. R. Statist. Soc. B 57 pp 749– (1995)
[202] Shephard, Likelihood analysis of non-Gaussian measurement time series, Biometrika 84 pp 653– (1997) · Zbl 0888.62095
[203] Skaug, Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models, Computnl Statist. Data Anal. 5 pp 699– (2006)
[204] Smith, Progress with numerical and graphical methods for practical Bayesian statistics, Statistician 36 pp 75– (1987)
[205] Song, Maximization by parts in likelihood inference, J. Am. Statist. Ass. 100 pp 1145– (2005) · Zbl 1117.62429
[206] Sørbye, Bayesian multiscale feature detection of log-spectral densities, Computnl Statist. Data Anal. (2009) · Zbl 1453.62204
[207] Sorensen, Likelihood, Bayesian and MCMC Methods in Quantitative Genetics (2002)
[208] Spiegelhalter, Bayesian measures of model complexity and fit (with discussion), J. R. Statist. Soc. B 64 pp 583– (2002) · Zbl 1067.62010
[209] Stein, Interpolation of Spatial Data (1999)
[210] Stein, Approximating likelihoods for large spatial data sets, J. R. Statist. Soc. B 66 pp 275– (2004) · Zbl 1062.62094
[211] Steinsland (2005)
[212] Stephens (1997)
[213] Stewart, Matrix Algorithms, vol. 2, Eigensystems (2001) · Zbl 0984.65031
[214] Taylor, Time Series Analysis: Theory and Practice 1 pp 203– (1982)
[215] Tierney, Accurate approximations for posterior moments and marginal densities, J. Am. Statist. Ass. 81 pp 82– (1986) · Zbl 0587.62067
[216] Tierney, Fully exponential Laplace approximations to expectations and variances of non-positive functions, J. Am. Statist. Ass. 84 pp 710– (1989) · Zbl 0682.62012
[217] Titterington, Statistical Analysis of Finite Mixture Distributions (1985) · Zbl 0646.62013
[218] Trotter, Proc. Symp. Monte Carlo Methods pp 64– (1956)
[219] Vecchia, Estimation and model identification for continuous spatial processes, J. R. Statist. Soc. B 50 pp 297– (1988)
[220] Wakefield, Discussion on ’Some algebra and geometry for hierarchical models, applied to diagnostics’ (by J. S. Hodges), J. R. Statist. Soc. B 60 pp 523– (1998)
[221] Wang, Proc. 10th Int. Wrkshp Artificial Intelligence and Statistics pp 373– (2005)
[222] Weir, Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data, Appl. Statist. 49 pp 473– (2000) · Zbl 0965.62099
[223] Whittle, On stationary processes in the plane, Biometrika 41 pp 434– (1954) · Zbl 0058.35601
[224] Woolrich, Variational Bayes inference of spatial mixture models for segmentation, IEEE Trans. Med. Imgng 25 pp 1380– (2006)
[225] Yun, Robust estimation in mixed linear models with non-monotone missingness, Statist. Med. 25 pp 3877– (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.