×

Spinning superconducting electrovacuum soliton. (English) Zbl 1248.83042

Summary: In nonlinear electrodynamics coupled to general relativity and satisfying the weak energy condition, a spherically symmetric electrically charged electrovacuum soliton has obligatory de Sitter center in which the electric field vanishes while the energy density of electromagnetic vacuum achieves its maximal value. De Sitter vacuum supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry from the de Sitter group in the origin. By the Gürses-Gürsey algorithm based on the Newman-Trautman technique it is transformed into a spinning electrovacuum soliton asymptotically Kerr-Newman for a distant observer. De Sitter center becomes de Sitter equatorial disk which has both perfect conductor and ideal diamagnetic properties. The interior de Sitter vacuum disk displays superconducting behavior within a single spinning soliton. All this concerns both black hole and particle-like structures.

MSC:

83C50 Electromagnetic fields in general relativity and gravitational theory
82D55 Statistical mechanics of superconductors
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Newman, E.T.; Cough, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R., J. math. phys., 6, 918, (1965)
[2] Newman, E.T.; Janis, A.J., J. math. phys., 6, 915, (1965)
[3] Carter, B., Phys. rev., 174, 1559, (1968)
[4] Israel, W., Phys. rev. D, 2, 641, (1970)
[5] Burinskii, A.Ya., Sov. phys. JETP, 39, 193, (1974)
[6] López, C.A., Nuovo cimento B, 76, 9, (1983)
[7] de la Cruz, V.; Chase, J.E.; Israel, W., Phys. rev. lett., 24, 423, (1970)
[8] Cohen, J.M., J. math. phys., 8, 1477, (1967)
[9] López, C.A., Phys. rev. D, 30, 313, (1984)
[10] Boyer, R.H.; Boyer, R.H., Proc. Cambridge philos. soc., Proc. Cambridge philos. soc., 62, 495, (1966)
[11] Trümper, M., Z. naturforsch., 22a, 1347, (1967)
[12] Tiomno, J., Phys. rev. D, 7, 992, (1973)
[13] Burinskii, A.Ya., Phys. lett. B, 216, 123, (1989)
[14] Burinskii, A., Gravit. cosmol., 8, 261, (2002)
[15] Burinskii, A.; Elizalde, E.; Hildebrandt, S.R.; Magli, G., Phys. rev. D, 65, 064039, (2002)
[16] Burinskii, A.
[17] Chandrasekhar, S., The mathematical theory of black holes, (1983), Clarendon Oxford · Zbl 0511.53076
[18] Carter, B.; Gautreau, R.L., Phys. rev., Nuovo cimento A, 50, 120, (1967)
[19] R.P. Kerr, A. Schild, American Mathematical Society Symposium, New York, 1964
[20] Gürses, M.; Gürsey, F., J. math. phys., 16, 2385, (1975)
[21] Grøn, Ø., Phys. rev. D, 31, 2129, (1985)
[22] Burinskii, A.Ya., Phys. rev. D, 52, 5826, (1995)
[23] Burinskii, A., Phys. rev. D, 57, 2392, (1998)
[24] Burinskii, A.
[25] Burinskii, A., (), 181
[26] Elizalde, E.; Hildebrandt, S.R., Phys. rev. D, 65, 124024, (2002)
[27] Dymnikova, I.G., Gen. relativ. gravit., 24, 235, (1992)
[28] Dymnikova, I.G., Phys. lett. B, 472, 33, (2000)
[29] Burinskii, A.; Hildebrandt, S.R., Phys. rev. D, 65, 104017, (2002)
[30] Dymnikova, I., Class. quantum grav., 19, 725, (2002)
[31] Ayón-Beato, E.; García, A., Phys. lett. B, 464, 25, (1999)
[32] Bronnikov, K.A., Phys. rev. D, 63, 044005, (2001)
[33] Dymnikova, I., Class. quantum grav., 21, 4417, (2004)
[34] Landau, L.D.; Lifshitz, E.M., Classical theory of fields, (1975), Pergamon Elmsford · Zbl 0178.28704
[35] Landau, L.D.; Lifshitz, E.M., Electrodynamics of continued media, (1978), Pergamon Elmsford · Zbl 0122.45002
[36] Fradkin, E.S.; Tseytlin, A.; Tseytlin, A., Phys. lett. B, Nucl. phys. B, 276, 391, (1985)
[37] Seiberg, N.; Witten, E., Jhep, 9909, 032, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.