×

zbMATH — the first resource for mathematics

Hawking temperature in the tunneling picture. (English) Zbl 1248.83046
Summary: We examine Hawking radiation from a Schwarzschild black hole in several reference frames using the quasi-classical tunneling picture. It is shown that when one uses \(\Gamma\propto\exp(\mathrm{Im}[\oint p\,dr])\), rather than \(\Gamma\propto\exp(2\mathrm{Im}[\int p\,dr])\) for the tunneling probability/decay rate one obtains twice the original Hawking temperature. The former expression for \(\Gamma\) is argued to be correct since \(\oint p\,dr\) is invariant under canonical transformations, while \(\int p\,dr\) is not. Thus, either the tunneling methods of calculating Hawking radiation are suspect or the Hawking temperature is twice that originally calculated.

MSC:
83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Hawking, S.W., Commun. math. phys., 43, 199, (1975)
[2] Volovik, G.E., JETP lett., 69, 662, (1999)
[3] Parikh, M.K.; Wilczek, F.; Parikh, M.K., Phys. rev. lett., Int. J. mod. phys. D, 13, 2351, (2004)
[4] Srinivasan, K.; Padmanabhan, T.; Shankaranarayanan, S.; Padmanabhan, T.; Srinivasan, K., Phys. rev. D, Class. quantum grav., 19, 2671, (2002)
[5] Medved, A.J.M.; Vagenas, E.C.; Medved, A.J.M.; Vagenas, E.C.; Arzano, M.; Medved, A.J.M.; Vagenas, E.C.; Vagenas, E.C., Mod. phys. lett. A, Mod. phys. lett. A, Jhep, Nuovo cimento B, 117, 899, (2002)
[6] Angheben, M.; Nadalini, M.; Vanzo, L.; Zerbini, S.; Nadalini, M.; Vanzo, L.; Zerbini, S., Jhep, J. phys. A, 39, 6601, (2006)
[7] Kerner, R.; Mann, R.B., Phys. rev. D, 73, 104010, (2006)
[8] Akhmedov, E.
[9] Chowdhury, B.D.
[10] Landau, L.; Lifshitz, L., Quantum mechanics (non-relativistic theory), (1977), Elsevier Amsterdam, Chapter 7 · Zbl 0178.57901
[11] Brout, R.; Massar, S.; Parentani, R.; Spindel, Ph., Phys. rep., 260, 329, (1995)
[12] Brout, R.; Spindel, Ph., Nucl. phys. B, 348, 405, (1991)
[13] M.K. Parikh, private communication
[14] Gibbons, G., (), 449
[15] Jacobson, T., Phys. rev. D, 44, 1731, (1991)
[16] Helfer, A., Rep. prog. phys., 66, 943, (2003)
[17] ’t Hooft, G., J. geom. phys., 1, 45, (1984)
[18] Banks, T.; Fischler, W.; Dimopoulos, S.; Landsberg, G.; Giddings, S.B.; Thomas, S., Phys. rev. lett., Phys. rev. D, 65, 056010, (2002)
[19] Bekenstein, J., Phys. rev. D, 7, 2333, (1973)
[20] Strominger, A.; Vafa, C., Phys. lett. B, 379, 99, (1996)
[21] Akhmedov, E., Int. J. mod. phys. A, 15, 1, (2000)
[22] Ashtekar, A., Phys. rev. lett., 80, 904, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.