×

On sloshing modes in a circular tank. (English) Zbl 1250.76026

From the summary: Employing the multipole-type functions, we derive a Trefftz-type representation of the velocity potential for the liquid sloshing problem in a two-dimensional circular tank. This representation defines a continuation of the velocity potential into the ‘air’ area confined by the ‘dry’ tank surface. Its usage facilitates an effective approximation of the natural sloshing modes for all tank fillings.

MSC:

76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] DOI: 10.1017/CBO9780511536656 · Zbl 1103.76002
[2] DOI: 10.1017/S002211201000412X · Zbl 1225.76048
[3] Faltinsen, Sloshing (2009)
[4] DOI: 10.1002/zamm.201000078 · Zbl 1380.76008
[5] DOI: 10.1007/BF01184847
[6] DOI: 10.1007/BF01109747 · Zbl 0186.17202
[7] DOI: 10.1007/BF01091569 · Zbl 0467.35072
[8] DOI: 10.1615/InterJFluidMechRes.v32.i4.50
[9] DOI: 10.1201/9781420035322
[10] Miles, Z. Angew. Math. Mech. 23 pp 861– (1972) · Zbl 0253.76017
[11] DOI: 10.1017/S0022112089000923 · Zbl 0667.76024
[12] DOI: 10.1103/PhysRevE.49.1283
[13] DOI: 10.1007/BF01385616 · Zbl 0707.65078
[14] Wigley, J. Math. Mech. 13 pp 549– (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.