zbMATH — the first resource for mathematics

Spinless bosons embedded in a vector Duffin-Kemmer-Petiau oscillator. (English) Zbl 1250.81030
Summary: Some properties of minimal and nonminimal vector interactions in the Duffin-Kemmer-Petiau (DKP) formalism are discussed. The conservation of the total angular momentum for spherically symmetric nonminimal potentials is derived from its commutation properties with each term of the DKP equation and the proper boundary conditions on the spinors are imposed. It is shown that the space component of the nonminimal vector potential plays a crucial role for the confinement of bosons. The exact solutions for the vector DKP oscillator (nonminimal vector coupling with a linear potential which exhibits an equally spaced energy spectrum in the weak-coupling limit) for spin-0 bosons are presented in a closed form and it is shown that the spectrum exhibits an accidental degeneracy.

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
22E70 Applications of Lie groups to the sciences; explicit representations
Full Text: DOI arXiv
[1] Petiau, G.; Kemmer, N.; Duffin, R.J., Acad. R. belg., A. sci. Mém. collect., Proc. R. soc. A, Phys. rev., 54, 1114, (1938)
[2] Kemmer, N., Proc. R. soc. A, 173, 91, (1939)
[3] Krajcik, R.A.; Nieto, M.M.; Krajcik, R.A.; Nieto, M.M., Phys. rev. D, Am. J. phys., 45, 818, (1977)
[4] Pilkuhn, H.M., Relativistic quantum mechanics, (2003), Springer Berlin · Zbl 1036.81001
[5] Clark, B.C., Phys. rev. lett., 55, 592, (1985)
[6] Kälbermann, G.; Kozack, R.E.; Kozack, R.E., Phys. rev. C, Phys. rev. C, Phys. rev. C, 40, 2181, (1989)
[7] Mishra, V.K., Phys. rev. C, 43, 801, (1991)
[8] Kurth, L.J.; Barret, R.C.; Nedjadi, Y.; Kurth, L.J., Phys. rev. C, Nucl. phys. A, Nucl. phys. A, 585, 335c, (1995)
[9] Ait-Tahar, S.; Al-Khalili, J.S.; Nedjadi, Y., Nucl. phys. A, 589, 307, (1995)
[10] Clark, B.C., Phys. lett. B, 427, 231, (1998)
[11] Debergh, N.; Ndimubandi, J.; Strivay, D.; Nedjadi, Y.; Barret, R.C., Z. phys. C, J. phys. A, 27, 4301, (1994)
[12] Nedjadi, Y.; Ait-Tahar, S.; Barret, R.C., J. phys. A, 31, 3867, (1998)
[13] Nedjadi, Y.; Barret, R.C., J. phys. A, 31, 6717, (1998) · Zbl 1047.81526
[14] Kulikov, D.A.; Tutik, R.S.; Yaroshenko, A.P., Mod. phys. lett. A, 20, 43, (2005)
[15] Boumali, A.; Chetouani, L.; Boztosun, I.; Boumali, A.; Yaşuk, F.; Karakoc, M.; Boztosun, I.; Boumali, A.; Kasri, Y.; Chetouani, L.; Falek, M.; Merad, M.; Guo, G., Phys. lett. A, J. math. phys., Phys. scr., Phys. scr., J. math. phys., Int. J. theor. phys., Comm. theor. phys., Can. J. phys., 87, 989, (2009)
[16] Cardoso, T.R.; Castro, L.B.; de Castro, A.S.; Cardoso, T.R.; Castro, L.B.; de Castro, A.S., J. phys. A, Nucl. phys. (proc. suppl.), 199, 203, (2010), see also · Zbl 1185.81103
[17] Cardoso, T.R.; Castro, L.B.; de Castro, A.S.; Cardoso, T.R.; Castro, L.B.; de Castro, A.S., Can. J. phys., Can. J. phys., 87, 857, (2009), see also
[18] Castro, L.B.; Cardoso, T.R.; de Castro, A.S., Nucl. phys. (proc. suppl.), 199, 207, (2010)
[19] Greiner, W., Quantum mechanics: an introduction, (1989), Springer Berlin
[20] Guertin, R.F.; Wilson, T.L., Phys. rev. D, 15, 1518, (1977), See, e.g.
[21] Vijayalakshmi, B.; Seetharaman, M.; Mathews, P.M., J. phys. A, 12, 665, (1979), See, e.g.
[22] Fischbach, E.; Nieto, M.M.; Scott, C.K., J. math. phys., 14, 1760, (1973)
[23] Nedjadi, Y.; Barret, R.C., J. phys. G, 19, 87, (1993)
[24] Shankar, R., Principles of quantum mechanics, (1994), Plenum Press New York · Zbl 0893.00007
[25] Arfken, G.B.; Weber, H.J., Mathematical methods for physicists, (1966), Harcourt/Academic Press San Diego · Zbl 0135.42304
[26] Abramowitz, M.; Stegun, I.A., Handbook of mathematical functions, (1965), Dover Toronto · Zbl 0515.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.