×

zbMATH — the first resource for mathematics

Non-lane-based lattice hydrodynamic model of traffic flow considering the lateral effects of the lane width. (English) Zbl 1250.90023
Summary: A new non-lane-based lattice model is proposed by incorporating the lateral separation effects of the lane width in traffic flow. The stability condition of the extended model is obtained by using the linear stability theory. The modified KdV equation near the critical point is derived to describe the phase transition of traffic flow and to estimate the evolution of traffic congestion through nonlinear analysis. Numerical simulation also shows that the incorporation of the lane width effects in lattice model can stabilize traffic flow and suppress the traffic jam, which implies that the lateral separation effects have important impacts in lattice models.

MSC:
90B20 Traffic problems in operations research
76M28 Particle methods and lattice-gas methods
35Q53 KdV equations (Korteweg-de Vries equations)
37K45 Stability problems for infinite-dimensional Hamiltonian and Lagrangian systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Case, H.W.; Hulbert, S.F.; Mount, G.E.; Brenner, R., Highway research board, 32, 364, (1953)
[2] Khan, S.I.; Maini, P., Transportation research record, 1678, 234, (1999)
[3] Michales, R.M.; Cozan, L.W., Public roads, 32, 233, (1963)
[4] Gunay, B., Transportation research part B, 41, 722, (2007)
[5] Jin, S.; Wang, D.H.; Tao, P.F.; Li, P.F., Physica A, 389, 4654, (2010)
[6] Nagatani, T., Physica A, 261, 599, (1998)
[7] Nagatani, T., Physica A, 264, 581, (1999)
[8] Xue, Y., Acta phys. sin., 53, 25, (2004)
[9] Ge, H.X.; Dai, S.Q.; Xue, Y.; Dong, L.Y., Phys. rev. E, 71, 066119, (2005)
[10] Ge, H.X.; Cheng, R.J., Physica A, 387, 6952, (2008)
[11] Zhu, H.B., Chinese physics B, 18, 1322, (2009)
[12] Li, X.L.; Li, Z.P.; Han, X.L.; Dai, S.Q., Commun. nonlinear sci. numer. simulat., 14, 2171, (2009)
[13] Ge, H.X., Physica A, 388, 1682, (2009)
[14] Ge, H.X.; Cheng, R.J.; Lei, L., Physica A, 389, 2825, (2010)
[15] Nagatani, T., Physica A, 271, 200, (1999)
[16] Nagatani, T., Phys. rev. E, 59, 4857, (1999)
[17] Nagatani, T., Physica A, 272, 592, (1999)
[18] Nagatani, T., Physica A, 265, 297, (1999)
[19] Tang, T.Q.; Huang, H.J.; Xue, Y., Acta phys. sin., 55, 4026, (2006)
[20] Peng, G.H., Acta phys. sin., 59, 108, (2010)
[21] Peng, G.H.; Cai, X.H.; Liu, C.Q.; Cao, B.F., Phys. lett. A, 375, 2153, (2011) · Zbl 1242.90059
[22] Tian, J.F.; Jia, B.; Li, X.G.; Gao, Z.Y., Chin. phys. B, 19, 040303, (2010)
[23] Sun, D.H.; Tian, C.; Liu, W.N., Chin. phys. B, 19, 080514, (2010)
[24] Sun, D.H.; Tian, C., Acta phys. sin., 60, 068901, (2011)
[25] Li, Z.P.; Li, X.L.; Liu, F.Q., International journal of modern physics C, 19, 1163, (2008)
[26] Ge, H.X.; Cheng, R.J.; Dai, S.Q., Physica A, 357, 466, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.