zbMATH — the first resource for mathematics

On PAC extensions and scaled trace forms. (English) Zbl 1251.11020
Let \(K\) be a field of characteristic \(\neq 2\).
For each finite separable field extension \(L/K\), any nonzero element \(\alpha \in L\) gives rise to a non-degenerate quadratic form \(L \rightarrow K\) defined by \(x\mapsto \text{Tr}_{F/K}(\alpha x^2)\). These forms are called scaled trace forms.
This paper deals with the problem of determining which non-degenerate quadratic forms over \(K\) are isomorphic to scaled trace forms. The main result (Thm. 4) states that, if there exists a PAC (pseudo algebraically closed) extension \(M/K\) such that \(M\) admits a separable extension of degree \(n\), then every non-degenerate quadratic form of dimension \(n\) over \(K\) is isomorphic to a scaled trace form.
From this, the authors deduce that the same conclusion holds in each of the following cases: (1) \(K\) is a prosolvable extension of a Hilbertian field, and \(n>4\); (2) \(K\) is a separable extension of a Hilbertian field \(K_0\) such that, for some prime \(p\), the Galois closure of \(K/K_0\) is prime-to-\(p\) over \(K_0\), and \(n\) is an arbitrary positive integer.
The proof of the main result is inspired by the arguments used by W. Scharlau [Math. Z. 196, 125–127 (1987; Zbl 0658.10025)] and W. C. Waterhouse [Arch. Math. 47, 229–231 (1986; Zbl 0607.10013)] to show that, if \(K\) is Hilbertian, then every non-degenerate quadratic form over \(K\) is isomorphic to a scaled trace form.

11E04 Quadratic forms over general fields
12E30 Field arithmetic
12E25 Hilbertian fields; Hilbert’s irreducibility theorem
Full Text: DOI arXiv
[1] L. Bary-Soroker, Dirichlet’s theorem for polynomial rings, Proceedings of the American Mathematical Society 137 (2009), 73–83. · Zbl 1259.12002 · doi:10.1090/S0002-9939-08-09474-4
[2] L. Bary-Soroker and M. Jarden, PAC fields over finitely generated fields, Mathematische Zeitschrift 260(2) (2008),329–334. · Zbl 1146.12002 · doi:10.1007/s00209-007-0276-3
[3] P. E. Conner and R. Perlis, A Survey of Trace Forms of Algebraic Number Fields, World Scientific Publ. Singapore, 1984. · Zbl 0551.10017
[4] M. Epkenhans, On trace forms of algebraic number fields, Archiv der Mathematik 60 (1993), 527–529. · Zbl 0777.11009 · doi:10.1007/BF01236076
[5] M. D. Fried and M. Jarden, Field Arithmetic, second edition, revised and enlarged by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer-Verlag, Heidelberg, 2005.
[6] C. Hermite, Remarques sur le theoreme de Sturm, Comptes Rendus Mathematique. Academie des Sciences. Paris 36 (1853), 294–297.
[7] M. Jarden and A. Razon, Pseudo algebraically closed fields over rings, Israel Journal of Mathematics 86 (1994), 25–59. · Zbl 0802.12007 · doi:10.1007/BF02773673
[8] M. Krüskemper, Algebraic number field extensions with prescribed trace form, Journal of Number Theory 40 (1992), 120–124. · Zbl 0762.11014 · doi:10.1016/0022-314X(92)90032-K
[9] M. Krüskemper and W. Scharlau, On trace forms of Hilbertian fields, Commentarii Mathematici Helvetici 63 (1988), 296–304. · Zbl 0662.10015 · doi:10.1007/BF02566769
[10] W. Scharlau, On trace forms of algebraic number fields, Mathematische Zeitschrift 196 (1987), 125–127. · Zbl 0658.10025 · doi:10.1007/BF01179273
[11] J. P. Serre, L’invariant de Witt de la forme Tr(x 2), Commentarii Mathematici Helvetici 59 (1984), 651–676. · Zbl 0565.12014 · doi:10.1007/BF02566371
[12] J. J. Sylvester, On a theory of the Syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraical common measure, Philosophical transactions of the Royal Society of London 143 (1853), 407–548. · doi:10.1098/rstl.1853.0018
[13] O. Taussky-Todd, The discriminant of an algebraic number field, Journal of the London Mathematical Society 43 (1968), 152–154. · Zbl 0155.37903 · doi:10.1112/jlms/s1-43.1.152
[14] W. C. Waterhouse, Scaled trace forms over number fields, Archiv der Mathematik Birkäuser, Basel 47 (1986), 229–231. · Zbl 0607.10013
[15] E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, Journal für die Reine und Angewandte Mathematik 176 (1937), 31–44. · Zbl 0015.05701 · doi:10.1515/crll.1937.176.31
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.