×

Kazhdan-Lusztig polynomials, tight quotients and Dyck superpartitions. (English) Zbl 1251.20005

The aim of the present paper is to study the parabolic Kazhdan-Lusztig polynomials (or KL-polynomials in short) for the tight quotients of the symmetric group \(S_n\). The tight quotients were introduced by J. R. Stembridge [in Electron. J. Comb. 11, No. 2, Research paper R14 (2004; Zbl 1067.20053)] who classified them for finite Coxeter groups.
Denote \([k]:=\{1,2,\dots,k\}\) for any \(k\in\mathbb{N}\). Let \(S=\{s_i\mid i\in[n-1]\}\) with \(s_i=(i,i+1)\) be the transposition of \(i\) and \(i+1\). Then the non-trivial tight quotients of \(S_n\) have the form \(W^J\), the set of minimal left coset representatives of \(S_n\) with respect to the parabolic subgroup generated by \(J\) with either \(|J|=n-2\) or \(J=S\setminus\{s_i,s_{i+1}\}\), \(i\in[n-2]\). The parabolic KL-polynomials for the tight quotients \(W^J\) of \(S_n\), \(|J|=n-2\), were studied by F. Brenti [in Pac. J. Math. 207, No. 2, 257-286 (2002; Zbl 1059.20007)].
The present paper completes the study for all the tight quotients \(W^J\) of \(S_n\). An explicit closed combinatorial formula is given for the parabolic KL-polynomials of all tight quotients of \(S_n\). For \(J=S\setminus\{s_i,s_{i+1}\}\), \(i\in[n-2]\), each of the parabolic KL-polynomials for the tight quotients \(W^J\) of \(S_n\) is encoded in a pair of superpartitions, which is either zero or a monic monomial. From the formula given in the present paper, one can derive some consequences including the formula of Brenti [loc. cit.] and some new identities for the ordinary KL-polynomials and for their leading terms.

MSC:

20C08 Hecke algebras and their representations
20C30 Representations of finite symmetric groups
05E15 Combinatorial aspects of groups and algebras (MSC2010)
20F55 Reflection and Coxeter groups (group-theoretic aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Björner, A.; Brenti, F., Combinatorics of Coxeter Groups, Grad. Texts in Math., vol. 231 (2005), Springer-Verlag: Springer-Verlag New York · Zbl 1110.05001
[2] Brenti, F., Kazhdan-Lusztig and \(R\)-polynomials, Youngʼs lattice, and Dyck partitions, Pacific J. Math., 207, 257-286 (2002) · Zbl 1059.20007
[3] Brenti, F., Enumerative and combinatorial properties of Dyck partitions, J. Combin. Theory Ser. A, 99, 51-74 (2002) · Zbl 1017.05018
[4] Casian, L.; Collingwood, D., The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z., 195, 581-600 (1987) · Zbl 0624.22010
[5] Corteel, S.; Lovejoy, J., Overpartitions, Trans. Amer. Math. Soc., 356, 1623-1635 (2004) · Zbl 1040.11072
[6] Corteel, S.; Mallet, O., Overpartitions, lattice paths, and Rogers-Ramanujan identities, J. Combin. Theory Ser. A, 114, 1407-1437 (2007) · Zbl 1126.11056
[7] Deodhar, V., On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra, 111, 483-506 (1987) · Zbl 0656.22007
[8] Desrosiers, P.; Lapointe, L.; Mathieu, P., Jack superpolynomials, superpartition ordering and determinantal formulas, Comm. Math. Phys., 233, 383-402 (2003) · Zbl 1075.81034
[9] Frenkel, I.; Khovanov, M.; Kirillov, A., Kazhdan-Lusztig polynomials and canonical basis, Transform. Groups, 3, 321-336 (1998) · Zbl 0918.17012
[10] Haglund, J.; Haiman, M.; Loehr, N., A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc., 18, 735-761 (2005) · Zbl 1061.05101
[11] Haglund, J.; Haiman, M.; Loehr, N.; Remmel, J.; Ulyanov, A., A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J., 126, 195-232 (2005) · Zbl 1069.05077
[12] Humphreys, J. E., Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math., vol. 29 (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0725.20028
[13] Jones, B., Leading coefficients of Kazhdan-Lusztig polynomials for Deodhar elements, J. Algebraic Combin., 29, 229-260 (2009) · Zbl 1228.20006
[14] Kashiwara, M.; Tanisaki, T., Parabolic Kazhdan-Lusztig polynomials and Schubert varieties, J. Algebra, 249, 306-325 (2002) · Zbl 1021.17015
[15] Kazhdan, D.; Lusztig, G., Representations of Coxeter groups and Hecke algebras, Invent. Math., 53, 165-184 (1979) · Zbl 0499.20035
[16] Lascoux, A., Polynômes de Kazhdan-Lusztig pour les variétés de Schubert vexillaires, C. R. Acad. Sci. Paris Sér. I Math., 321, 667-670 (1995) · Zbl 0886.05117
[17] Leclerc, B.; Thibon, J.-Y., Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials, Adv. Stud. Pure Math., 28, 155-220 (2000) · Zbl 1058.20006
[18] Lovejoy, J.; Mallet, O., Overpartition pairs and two classes of basic hypergeometric series, Adv. Math., 217, 386-418 (2008) · Zbl 1206.11129
[19] MacMahon, P. A., Combinatory Analysis (1960), Chelsea Publishing Co.: Chelsea Publishing Co. New York · Zbl 0101.25102
[20] McLarnan, T.; Warrington, G., Counterexamples to the 0-1 conjecture, Represent. Theory, 7, 181-195 (2003) · Zbl 1014.05068
[21] Marietti, M., Boolean elements in Kazhdan-Lusztig theory, J. Algebra, 295, 1-26 (2006) · Zbl 1097.20035
[22] Marietti, M., Parabolic Kazhdan-Lusztig and \(R\)-polynomials for Boolean elements in the symmetric group, European J. Combin., 31, 908-924 (2010) · Zbl 1220.20005
[23] Shi, J., Joint relations on elements of the symmetric group, J. Algebra, 319, 3197-3221 (2008) · Zbl 1187.20003
[24] Soergel, W., Kazhdan-Lusztig polynomials and a combinatoric for tilting modules, Represent. Theory, 1, 83-114 (1997) · Zbl 0886.05123
[25] Soergel, W., Character formulas for tilting modules over Kac-Moody algebras, Represent. Theory, 1, 115-132 (1997) · Zbl 0964.17019
[26] Stanley, R. P., Enumerative Combinatorics, vol. 1 (1986), Wadsworth and Brooks/Cole: Wadsworth and Brooks/Cole Monterey, CA · Zbl 0608.05001
[27] Stanley, R. P., Enumerative Combinatorics, vol. 2, Cambridge Stud. Adv. Math., vol. 62 (1999), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0928.05001
[28] Stembridge, J., Tight quotients and double quotients in the Bruhat order, Electron. J. Combin., 11 (2005), R14, 41 pp · Zbl 1067.20053
[29] Uglov, D., Canonical bases of higher level \(q\)-deformed Fock spaces and Kazhdan-Lusztig polynomials, (Physical Combinatorics. Physical Combinatorics, Progr. Math., vol. 191 (2000), Birkhäuser: Birkhäuser Boston, MA), 249-299 · Zbl 0963.17012
[30] Varagnolo, M.; Vasserot, E., On the decomposition matrices of the quantized Schur algebra, Duke Math. J., 100, 267-297 (1999) · Zbl 0962.17006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.