×

Analytical approximate solutions for the cubic-quintic Duffing oscillator in terms of elementary functions. (English) Zbl 1251.34002

Summary: Accurate approximate closed-form solutions for the cubic-quintic Duffing oscillator are obtained in terms of elementary functions. To do this, we use the previous results obtained using a cubication method in which the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a cubic Duffing equation. Explicit approximate solutions are then expressed as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function cn. Then we obtain other approximate expressions for these solutions, which are expressed in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean is used and the rational harmonic balance method is applied to obtain the periodic solution of the original nonlinear oscillator.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. K. Lai, C. W. Lim, B. S. Wu, C. Wang, Q. C. Zeng, and X. F. He, “Newton-harmonic balancing approach for accurate solutions to nonlinear cubic-quintic Duffing oscillators,” Applied Mathematical Modelling. Simulation and Computation for Engineering and Environmental Systems, vol. 33, no. 2, pp. 852-866, 2009. · Zbl 1168.34321 · doi:10.1016/j.apm.2007.12.012
[2] J. I. Ramos, “On Linstedt-Poincaré technique for the quintic Duffing equation,” Applied Mathematics and Computation, vol. 193, no. 2, pp. 303-310, 2007. · Zbl 1193.65142 · doi:10.1016/j.amc.2007.03.050
[3] C. W. Lim, R. Xu, S. K. Lai, Y. M. Yu, and Q. Yang, “Nonlinear free vibration of an elastically-restrained beam with a point mass via the Newton-harmonic balancing approach,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 5, pp. 661-674, 2009. · Zbl 06942437 · doi:10.1515/IJNSNS.2009.10.5.661
[4] A. Beléndez, G. Bernabeu, J. Francés, D. I. Méndez, and S. Marini, “An accurate closed-form approximate solution for the quintic Duffing oscillator equation,” Mathematical and Computer Modelling, vol. 52, no. 3-4, pp. 637-641, 2010. · Zbl 1201.34019 · doi:10.1016/j.mcm.2010.04.010
[5] J. H. Denman, “An approximate equivalent linearization technique for nonlinear oscillations,” Journal of Applied Mechanics, vol. 36, no. 2, pp. 358-360, 1969. · Zbl 0179.40902 · doi:10.1115/1.3564651
[6] R. E. Jonckheere, “Determination of the period of nonlinear oscillations by means of Chebyshev polynomials,” Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 51, pp. 389-393, 1971. · Zbl 0223.34036 · doi:10.1002/zamm.19710510508
[7] S. Bravo-Yuste, “Cubication of nonlinear oscillators using the principle of harmonic balance,” International Journal of Non-Linear Mechanics, vol. 27, no. 3, pp. 347-356, 1992. · Zbl 0766.70016 · doi:10.1016/0020-7462(92)90004-Q
[8] S. Bravo-Yuste and A. Martín-Sánchez, “A weighted mean-square method of “cubication” for nonlinear oscillators,” Journal of Sound and Vibration, vol. 134, no. 3, pp. 423-433, 1989. · Zbl 1235.70168 · doi:10.1016/0022-460X(89)90567-1
[9] A. Beléndez, M. L. Álvarez, E. Fernández, and I. Pascual, “Cubication of conservative nonlinear oscillators,” European Journal of Physics, vol. 30, no. 5, pp. 973-981, 2009. · Zbl 1257.65048 · doi:10.1088/0143-0807/30/5/006
[10] A. Beléndez, D. I. Méndez, E. Fernández, S. Marini, and I. Pascual, “An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method,” Physics Letters A, vol. 373, pp. 2805-2809, 2009. · Zbl 1233.70008 · doi:10.1016/j.physleta.2009.05.074
[11] A. Elías-Zúñiga, O. Martínez-Romero, and R. Córdoba-Díaz, “Approximate solution for the Duffing-harmonic oscillator by the enhanced cubication method,” Mathematical Problems in Engineering, vol. 2012, Article ID 618750, 12 pages, 2012. · Zbl 1264.34067 · doi:10.1155/2012/618750
[12] J. Cai, X. Wu, and Y. P. Li, “An equivalent nonlinearization method for strongly nonlinear oscillations,” Mechanics Research Communications, vol. 32, no. 5, pp. 553-560, 2005. · Zbl 1192.70038 · doi:10.1016/j.mechrescom.2004.10.004
[13] S. Bullett and J. Stark, “Renormalizing the simple pendulum,” SIAM Review, vol. 35, no. 4, pp. 631-640, 1993. · Zbl 0790.70007 · doi:10.1137/1035140
[14] A. Beléndez, E. Arribas, A. Márquez, M. Ortuño, and S. Gallego, “Approximate expressions for the period of a simple pendulum using a Taylor series expansion,” European Journal of Physics, vol. 32, no. 5, pp. 1303-1310, 2011. · Zbl 1315.70007 · doi:10.1088/0143-0807/32/5/018
[15] R. E. Mickens, Oscillations in Planar Dynamic Systems, World Scientific, Singapore, Singapore, 1996. · Zbl 0840.34001
[16] E. W. Weisstein, “Arithmetic-Geometric Mean,” From MathWorld-A Wolfram Web Resource, http://mathworld.wolfram.com/Arithmetic-GeometricMean.html.
[17] C. G. Carvalhaes and P. Suppes, “Approximation for the period of the simple pendulum based on the arithmetic-geometric mean,” American Journal of Physics, vol. 76, no. 12, pp. 1150-1154, 2008. · doi:10.1119/1.2968864
[18] M. Febbo, “A finite extensibility nonlinear oscillator,” Applied Mathematics and Computation, vol. 217, no. 14, pp. 6464-6475, 2011. · Zbl 1211.65090 · doi:10.1016/j.amc.2011.01.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.