zbMATH — the first resource for mathematics

Evaluation of photovoltaic cells in a multi-criteria decision making process. (English) Zbl 1251.90217
Summary: The requirements to satisfy the energy needs of today without compromising those of future generations have forced humans to adopt rules that permit a better use of the available resources, of which the sun is an inexhaustible energy source. Amongst the energy sources that offer the possibility of exploiting the resources offered by the Earth, solar energy has acquired great strength. Photovoltaic energy has presented a major evolution and it is forecasted as being an important contributor to power generation and an alternative to other non-renewable energy sources. The high cost of solar electricity is today the main reason why electricity from photovoltaic systems has not been introduced in a more widespread way. In this context, the aim of this paper is the study and analysis of the decision criteria to be used when searching for the best photovoltaic cell, studying both the criteria that exert most influence or their manufacture (defined by quantitative and qualitative values) and the alternatives which will be the decision problem to be solved; each alternative will correspond to one type of photovoltaic cell. Thus, relevant information has been provided by three experts and the TOPSIS method has been used to aggregate all the information combined with the use of fuzzy sets which will model the use of linguistic labels in the process.

90B50 Management decision making, including multiple objectives
Full Text: DOI
[1] Arán-Carrión, J., Espín-Estrella, A., Aznar-Dols, F., Zamorano-Toro, M., Rodríguez, M., & Ramos-Ridao, A. (2008). Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants. Renewable & Sustainable Energy Reviews, 12, 2358–2380. · doi:10.1016/j.rser.2007.06.011
[2] Beccali, M., Cellura, M., & Ardente, D. (1998). Decision making in energy planning: the ELECTRE multicriteria analysis approach compared to a fuzzy-sets methodology. Energy Conversion and Management, 39(16–18), 1869–1881. · doi:10.1016/S0196-8904(98)00053-3
[3] Cavallaro, F. (2009). Multi-criteria decision aid to assess concentrated solar thermal technologies. Renewable Energy, 34, 1678–1685. · doi:10.1016/j.renene.2008.12.034
[4] Cavallaro, F. (2010a). Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Applied Energy, 87, 496–503. · doi:10.1016/j.apenergy.2009.07.009
[5] Cavallaro, F. (2010b). A comparative assessment for thin-film photovoltaic production processes using the ELECTRE III method. Energy Policy, 38, 463–474. · doi:10.1016/j.enpol.2009.09.037
[6] Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114, 1–9. · Zbl 0963.91030 · doi:10.1016/S0165-0114(97)00377-1
[7] Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision making: methods and applications. Berlin: Springer. · Zbl 0768.90042
[8] Chu, T. C. (2002a). Facility location selection using fuzzy TOPSIS under group decisions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10, 687–701. · Zbl 1065.90085 · doi:10.1142/S0218488502001739
[9] Chu, T. C. (2002b). Selecting plant location via a fuzzy TOPSIS approach. The International Journal of Advanced Manufacturing Technology, 20, 859–864. · doi:10.1007/s001700200227
[10] Delgado, M., Verdegay, J. L., & Vila, M. A. (1992). Linguistic decision making models. International Journal of Intelligent Systems, 7, 479–492. · Zbl 0756.90001 · doi:10.1002/int.4550070507
[11] Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: theory and applications. New York: Academic Press. · Zbl 0444.94049
[12] EPIA/Greenpeace (2008). Electricity for over one billion people and two million jobs by 2020. Solar Generation V, 8–10.
[13] European Photovoltaic Technology Platform (2007). Strategic research agenda (SRA) for photovoltaic solar energy technology. http://www.eupvplatform.org/publications/strategic-research-agenda-implementation-plan.html .
[14] García-Cascales, M. S., & Lamata, M. T. (2007). A modification to the index of Liou and Wang for ranking fuzzy number, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 411–424. · Zbl 1142.68552
[15] García-Cascales, M. S., & Lamata, M. T. (2011). Multi-criteria analysis for a maintenance management problem in an engine factory: rational choice. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-009-0290-x .
[16] Georgopoulou, E., Lalas, D., & Papagiannakis, L. (1997). A multicriteria decision aid approach for energy planning problems: the case of renewable energy option. European Journal of Operational Research, 103, 38–54. · Zbl 0922.90097 · doi:10.1016/S0377-2217(96)00263-9
[17] Green, M. A. (2001). Third generation photovoltaics: ultra-hight conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications, 9, 123–135. doi: 10.1002/pip.360 . · doi:10.1002/pip.360
[18] Green, M. A. (2002). Third generation photovoltaics: solar cells for 2020 and beyond. Physica. E, Low-Dimensional Systems and Nanostructures, 14, 65–70. · doi:10.1016/S1386-9477(02)00361-2
[19] Green, M. A. (2009). Polycristalline silicon on glass for thin-film solar cells. Applied Physics. A, Materials Science & Processing, 96, 153–159. · doi:10.1007/s00339-009-5090-9
[20] Halls, J. J. M., & Friend, R. H. (2001). Organic photovoltaics devices. In M. D. Archer & R. Hill (Eds.), Clean electricity from photovoltaics (pp. 377–445). London: Imperial College Press.
[21] Haralambopoulos, D. A., & Polatidis, H. (2003). Renewable energy projects: structuring a multi-criteria group decision-making framework. Renewable Energy, 28, 961–973. · doi:10.1016/S0960-1481(02)00072-1
[22] Hegedus, E., & Luque, A. (2003). Handbook of photovoltaic science and engineering. New York: Wiley.
[23] Herrera, F., Alonso, S., Chiclana, F., & Herrera-Viedma, E. (2009). Computing with words in decision making: foundations, trends and prospects. Fuzzy Optimization and Decision Making, 8, 337–364. · Zbl 05682279 · doi:10.1007/s10700-009-9065-2
[24] Huang, J. P., Poh, K. L., & Ang, B. W. (1995). Decision analysis in energy and environmental modelling. Energy, 20(9), 843–855. · doi:10.1016/0360-5442(95)00036-G
[25] Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision methods and applications. Berlin: Springer. · Zbl 0453.90002
[26] Kazmerski, L. L. (2006). Solar photovoltaics R&D at the tipping point: a 2005 technology overview. Journal of Electron Spectroscopy and Related Phenomena, 150, 105–135. · doi:10.1016/j.elspec.2005.09.004
[27] Keeney, R., & Raiffa, H. (1976). Decisions with multiple objectives: preferences and value tradeoffs. New York: Wiley. · Zbl 0488.90001
[28] Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications. New York: Prentice Hall. · Zbl 0915.03001
[29] Kwi-Seong, J., Won-Yong, L., & Chang-Soo, K. (2005). Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics. Journal of Power Sources, 145, 319–326. · doi:10.1016/j.jpowsour.2005.01.076
[30] Luce, R. D., & Raiffa, H. (1957). Games and decisions: introduction and critical survey. New York: Wiley. · Zbl 0084.15704
[31] Messenger, R. A., & Ventre, J. (2004). Present and proposed PV cells. In Photovoltaic systems engineering (2nd ed.) (pp. 373–413). Boca Raton: CRC Press.
[32] Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill. · Zbl 0587.90002
[33] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.