×

zbMATH — the first resource for mathematics

Chemical reaction systems with toric steady states. (English) Zbl 1251.92016
Summary: Mass-action chemical reaction systems are frequently used in computational biology. The corresponding polynomial dynamical systems are often large (consisting of tens or even hundreds of ordinary differential equations) and poorly parameterized (due to noisy measurement data and a small number of data points and repetitions). Therefore, it is often difficult to establish the existence of (positive) steady states or to determine whether more complicated phenomena such as multistationarity exist. If, however, the steady state ideal of the system is a binomial ideal, then we show that these questions can be answered easily.
The focus of this work is on systems with this property, and we say that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction system to have toric steady states. Furthermore, we analyze the capacity of such a system to exhibit positive steady states and multistationarity. Examples of systems with toric steady states include weakly-reversible zero-deficiency chemical reaction systems. An important application of our work concerns the networks that describe the multisite phosphorylation of a protein by a kinase/phosphatase pair in a sequential and distributive mechanism.

MSC:
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C42 Systems biology, networks
37N25 Dynamical systems in biology
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Angeli, D., De Leenheer, P., & Sontag, E. (2007). A Petri net approach to persistence analysis in chemical reaction networks. In I. Queinnec, S. Tarbouriech, G. Garcia, & S.-I. Niculescu (Eds.), Lecture notes in control and information sciences: Vol. 357. Biology and Control Theory: Current Challenges (pp. 181–216). Berlin: Springer. · Zbl 1133.92322
[2] Battogtokh, D., & Tyson, J. J. (2004). Bifurcation analysis of a model of the budding yeast cell cycle. Chaos, 14(3), 653–661.
[3] Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., & Tyson, J. J. (2004). Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell, 15(8), 3841–3862.
[4] Conradi, C., Dickenstein, A., Pérez Millán, M., & Shiu, A. (2010). Counting positive roots of polynomials with applications for biochemical systems. In preparation.
[5] Conradi, C., Flockerzi, D., & Raisch, J. (2008). Multistationarity in the activation of a MAPK: Parametrizing the relevant region in parameter space. Math. Biosci., 211(1), 105–131. · Zbl 1130.92024
[6] Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2005). Using Chemical Reaction Network Theory to discard a kinetic mechanism hypothesis. IEE Proc. Syst. Biol. (now IET Systems Biology), 152(4), 243–248.
[7] Cox, D., Little, J., & O’Shea, D. (1992). Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra. New York: Springer. · Zbl 0756.13017
[8] Craciun, G., Dickenstein, A., Shiu, A., & Sturmfels, B. (2009). J. Symb. Comput., 44, 1551–1565. · Zbl 1188.37082
[9] Deshaies, R. J., & Ferrell, J. E. (2001). Multisite phosphorylation and the countdown to S phase. Cell, 107(7), 819–822.
[10] Eisenbud, D., & Sturmfels, B. (1996). Binomial ideals. Duke Math. J., 84(1), 1–45. · Zbl 0873.13021
[11] Feinberg, M. (1972). Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal., 49(3), 187–194.
[12] Feinberg, M. (1989). Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity. Chem. Eng. Sci., 44(9), 1819–1827.
[13] Feinberg, M. (1995a). The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal., 132(4), 311–370. · Zbl 0853.92024
[14] Feinberg, M. (1995b). Multiple steady states for chemical reaction networks of deficiency one. Arch. Ration. Mech. Anal., 132(4), 371–406. · Zbl 0853.92025
[15] Flockerzi, D., & Conradi, C. (2008). Subnetwork analysis for multistationarity in mass-action kinetics. J. Phys. Conf. Ser., 138(1), 012006. · Zbl 1278.37058
[16] Gatermann, K., & Huber, B. (2002). A family of sparse polynomial systems arising in chemical reaction systems. J. Symb. Comput., 33(3), 275–305. · Zbl 0994.92040
[17] Hermann-Kleiter, N., & Baier, G. (2010). NFAT pulls the strings during CD4 + T helper cell effector functions. Blood, 115(15), 2989–2997.
[18] Hogan, P. G., Chen, L., Nardone, J., & Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev., 17(18), 2205–2232.
[19] Holstein, K. (2008). Mathematische analyse der n-fachen Phosphorylierung eines Proteins: Existenz mehrfach stationärer Zustände. Master’s thesis, Diplomarbeit, Universität Magdeburg.
[20] Horn, F. (1972). Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal., 49(3), 172–186.
[21] Horn, F., & Jackson, R. (1972). General mass action kinetics. Arch. Ration. Mech. Anal., 47(2), 81–116.
[22] Huang, C.-Y. F., & Ferrell, J. E. (1996). Ultrasensitivity in the Mitogen-Activated Protein Kinase Cascade. Proc. Natl. Acad. Sci. USA, 93(19), 10078–10083.
[23] Kapuy, O., Barik, D., Sananes, M. R.-D., Tyson, J. J., & Novák, B. (2009). Bistability by multiple phosphorylation of regulatory proteins. Prog. Biophys. Mol. Biol., 100(1–3), 47–56.
[24] Macian, F. (2005). NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol., 5(6), 472–484.
[25] Manrai, A. K., & Gunawardena, J. (2008). The geometry of multisite phosphorylation. Biophys. J., 95(12), 5533–5543.
[26] Markevich, N. I., Hoek, J. B., & Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164(3), 353–359.
[27] Rockafellar, R. T. (1970). Convex analysis. Princeton: Princeton University Press. · Zbl 0193.18401
[28] Sha, W., Moore, J., Chen, K., Lassaletta, A. D., Yi, C.-S., Tyson, J. J., & Sible, J. C. (2003). Hysteresis drives cell-cycle transitions in xenopus laevis egg extracts. Proc. Natl. Acad. Sci. USA, 100(3), 975–980.
[29] Shaul, Y. D., & Seger, R. (2007). The MEK/ERK cascade: From signaling specificity to diverse functions. Biochim. Biophys. Acta, 1773(8), 1213–1226.
[30] Shinar, G., & Feinberg, M. (2010). Structural sources of robustness in biochemical reaction networks. Science, 327(5971), 1389–1391.
[31] Strang, G. (1976). Linear algebra and its applications. New York: Academic Press. · Zbl 0338.15001
[32] Thomas, R., & Kaufman, M. (2001a). Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. Chaos, 11(1), 170–179. · Zbl 1072.92505
[33] Thomas, R., & Kaufman, M. (2001b). Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos, 11(1), 180–195. · Zbl 0997.92012
[34] Thomson, M., & Gunawardena, J. (2009a). The rational parameterisation theorem for multisite post-translational modification systems. J. Theor. Biol., 261(4), 626–636. · Zbl 1403.92085
[35] Thomson, M., & Gunawardena, J. (2009b). Unlimited multistability in multisite phosphorylation systems. Nature, 460(7252), 274–277.
[36] Wang, L., & Sontag, E. (2008). On the number of steady states in a multiple futile cycle. J. Math. Biol., 57(1), 29–52. · Zbl 1141.92022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.