×

Three-scale convergence for processes in heterogeneous media. (English) Zbl 1252.35038

The authors follow the idea (and the line of proofs) for the method of two-scale convergence and compactness and propose a three-scale convergence, intended for capturing periodically oscillatory information from three separated scale lengths. These lengths are referred to here as the macroscale, the mesoscale and the microscale. They are all supposed to hold at the continuum level.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1137/0520043 · Zbl 0688.35007
[2] DOI: 10.1137/0523084 · Zbl 0770.35005
[3] Cioranescu D, An Introduction to Homogenization (1999)
[4] DOI: 10.1137/050645269 · Zbl 1178.35050
[5] Neuss-Radu M, C. R. Acad. Sci. Paris Sér. I Math. 322 pp 899– (1996)
[6] DOI: 10.1016/0022-247X(79)90211-7 · Zbl 0427.35073
[7] DOI: 10.1016/0022-0396(91)90047-D · Zbl 0731.76080
[8] DOI: 10.1093/imamat/46.1-2.29 · Zbl 0726.76092
[9] Tartar L, Convergence of the Homogenization Process, Appendix of Nonhomogeneous Media and Vibrations Theory, Lecture Notes in Physics 127 (1980)
[10] Tartar L, Partial Differential Equations and Calculus of Variations, Essay in Honour of Ennop De Giorgi (1989) · Zbl 0694.35035
[11] DOI: 10.1142/S0218202503002489 · Zbl 1050.76015
[12] DOI: 10.1142/S0218202596000389 · Zbl 0870.76084
[13] DOI: 10.1016/j.crme.2003.09.005 · Zbl 1223.74034
[14] DOI: 10.1142/S0218202504003647 · Zbl 1071.74042
[15] Neuss-Radu M, SIAM J. Numer. Anal. 39 pp 687– (2007) · Zbl 1145.35017
[16] Torquato S, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (2002)
[17] DOI: 10.1016/S0021-9991(03)00303-6 · Zbl 1034.65067
[18] DOI: 10.1137/040607137 · Zbl 1092.65093
[19] DOI: 10.1142/S0218202506001285 · Zbl 1095.74029
[20] DOI: 10.1137/030600771 · Zbl 1160.65337
[21] DOI: 10.1137/050636772 · Zbl 1220.74010
[22] DOI: 10.1142/S0218202503002817 · Zbl 1076.35505
[23] DOI: 10.1016/j.jcp.2004.10.001 · Zbl 1143.76541
[24] DOI: 10.1016/j.mcm.2006.01.025 · Zbl 1130.92006
[25] DOI: 10.1016/j.camwa.2006.02.028 · Zbl 1121.92025
[26] DOI: 10.1016/S0070-2153(07)81017-9
[27] DOI: 10.1016/j.mcm.2007.06.004 · Zbl 1134.92003
[28] DOI: 10.1016/j.aml.2008.05.005 · Zbl 1162.92013
[29] DOI: 10.1137/S0036139999358167 · Zbl 1002.35120
[30] DOI: 10.1137/S0036139900382772 · Zbl 1103.35098
[31] DOI: 10.1016/j.jmaa.2007.12.035 · Zbl 1357.49052
[32] DOI: 10.1007/BF02096647 · Zbl 0767.58033
[33] Pankratov L, C. R. Acad. Sci. Paris, Sér. I Math 335 pp 315– (2002) · Zbl 1031.49024
[34] Zhikov VV, Homogenization of Differential Equations (1993)
[35] Nguetseng G, Banach J. Math. Anal. 4 pp 100– (2010) · Zbl 1192.35016
[36] DOI: 10.1142/S0218202502001994 · Zbl 1174.82328
[37] DOI: 10.1142/S0218202505000935 · Zbl 1078.92036
[38] Allaire G, Proc. R. Soc. Edin. 126 pp 297– (1996) · Zbl 0866.35017
[39] Bensoussan A, Asymptotic Analysis for Periodic Structures (1978)
[40] Nguetseng G, Electron. J. Differ. Eqns 74 pp 1– (2009)
[41] E. Zappale, {\(\Gamma\)}-Convergence via three scales convergence, inProceedings of the First HMS2000 International School and Conference on Homogenization, 2001, Mathematical Sciences and Applications, Vol. 18, GAKUTO International Series, pp. 289-295
[42] Jikov, VV and Kozlov, SM. 1999.Multiscaled Homogenization, Homogenization, Series on Advances in Mathematics for Applied Sciences, Vol. 50, 35–64. Singapore: World Scientific.
[43] Munkres JR, Topology (2000)
[44] Halmos PR, Measure Theory, Graduate Texts in Mathematics 18 (1978)
[45] Stroock DW, A Concise Introduction to the Theory of Integration ,, 3. ed. (1998)
[46] Yosida K, Functional Analysis,, 6. ed. (1980) · Zbl 0830.46001
[47] Temam R, Navier-Stokes Equations (1977)
[48] Adams RA, Sobolev Spaces,, 2. ed. (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.