zbMATH — the first resource for mathematics

Mixing-induced spontaneous supersymmetry breaking. (English) Zbl 1252.81096
Summary: It is conjectured that flavor mixing furnishes a universal mechanism for the spontaneous breaking of supersymmetry. The conjecture is proved explicitly for the mixing of two chiral N=1 supermultiplets and arguments for its general validity are given. That is an instance of the O’Raifeartaigh Lagrangian for which there is no tree-level nor perturbative breaking. Nonetheless, the dynamical breaking occurs due to the vacuum condensate, a mixing-induced nonperturbative effect that lifts the zero point energy.

81T10 Model quantum field theories
81T60 Supersymmetric field theories in quantum mechanics
81R40 Symmetry breaking in quantum theory
37A25 Ergodicity, mixing, rates of mixing
Full Text: DOI arXiv
[1] Fayet, P.; Iliopoulos, J., Phys. lett. B, 51, 461, (1974)
[2] OʼRaifeartaigh, L., Nucl. phys. B, 96, 331, (1975)
[3] Witten, E., Nucl. phys. B, 188, 513, (1981)
[4] Shadmi, Y.; Shirman, Y., Rev. mod. phys., 72, 25, (2000)
[5] Cabibbo, N., Phys. rev. lett., 10, 531, (1963)
[6] Kobayashi, M.; Maskawa, T., Prog. theor. phys., 49, 652, (1973)
[7] Bilenky, S.M.; Pontecorvo, B., Phys. rept., 41, 225, (1978)
[8] Wess, J.; Zumino, B., Nucl. phys. B, 70, 39, (1974)
[9] Wess, J.; Zumino, B., Phys. lett. B, 49, 52, (1974)
[10] Blasone, M.; Vitiello, G.; Blasone, M.; Vitiello, G., Annals phys., Annals phys., 249, 363, (1996), (Erratum)
[11] Alfinito, E.; Blasone, M.; Iorio, A.; Vitiello, G., Phys. lett. B, 362, 91, (1995)
[12] Blasone, M.; Capolupo, A.; Romei, O.; Vitiello, G., Phys. rev. D, 63, 125015, (2001)
[13] Ji, C.R.; Mishchenko, Y., Phys. rev. D, 65, 096015, (2002)
[14] Blasone, M.; Capolupo, A.; Ji, C.R.; Vitiello, G., Int. J. mod. phys. A, 25, 4179, (2010)
[15] Iorio, A., Supersymmetric Noether currents and Seiberg-Witten theory, (2010), Lambert Acad. Publ. Saarbrucken · Zbl 1063.81088
[16] Iorio, A.; OʼRaifeartaigh, L.; Wolf, S., Annals phys., 290, 156, (2001)
[17] A. Capolupo, PhD thesis, arXiv:hep-th/0408228.
[18] Blasone, M.; Capolupo, A.; Capozziello, S.; Carloni, S.; Vitiello, G., Phys. lett. A, 323, 182, (2004)
[19] Das, A.K., Finite temperature field theory, (1997), World Scientific Singapore
[20] Blasone, M.; Di Mauro, M.; Vitiello, G., Phys. lett. B, 697, 238, (2011)
[21] Capolupo, A.; Capozziello, S.; Vitiello, G., Phys. lett. A, 363, 53, (2007)
[22] Capolupo, A.; Capozziello, S.; Vitiello, G., Phys. lett. A, 373, 601, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.