×

zbMATH — the first resource for mathematics

Active sliding observer scheme based fractional chaos synchronization. (English) Zbl 1253.34056
Summary: A novel observer scheme is proposed for the synchronization of fractional-order chaotic systems. Our approach employs a combination of a classical sliding observer and an active observer, where the active observer serves to increase the attraction strength of the sliding surface. Using the theory of Lyapunov functions, synchronization of the fractional order response with the fractional-order drive system is achieved in both ideal and mismatched cases. By using fractional-order differentiation and integration, it is proved that state synchronization is established in a finite time. Numerical simulations are presented to verify the effectiveness of the proposed observer.

MSC:
34H10 Chaos control for problems involving ordinary differential equations
34A08 Fractional ordinary differential equations and fractional differential inclusions
34D06 Synchronization of solutions to ordinary differential equations
93B07 Observability
34C28 Complex behavior and chaotic systems of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zhou, T.S.; Li, C.P., Synchronization in fractional-order differential systems, Physica D, 212, 111-125, (2005) · Zbl 1094.34034
[2] Kiani-B, A.; Fallahi, K.; Pariz, N.; Leung, H., A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun nonlinear sci numer simul, 14, 863-879, (2009) · Zbl 1221.94049
[3] Wang, X.Y.; He, Y.J.; Wang, M.J., Chaos control of a fractional order modified coupled dynamos system, Nonlinear anal, 71, 6126-6134, (2009) · Zbl 1187.34080
[4] Lei, S.; Yang, J.Y.; Xu, S.Y., Chaos synchronization for a class of nonlinear oscillators with fractional order, Nonlinear anal, 72, 2326-2336, (2010) · Zbl 1187.34066
[5] Mata-Machuca, J.L.; Martínez-Guerra, R.; Aguilar-López, R., An exponential polynomial observer for synchronization of chaotic systems, Commun nonlinear sci numer simul, 15, 4114-4130, (2010) · Zbl 1222.93040
[6] Feki, M., Observer-based exact synchronization of ideal and mismatched chaotic systems, Phys lett A, 309, 53-60, (2003) · Zbl 1010.37016
[7] Lin, D.; Wang, X., Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation, Fuzzy sets syst, 161, 2066-2080, (2010) · Zbl 1194.93065
[8] Chen, M.; Zhou, D.; Shan, Y., A sliding mode observer based secure communication scheme, Chaos solitons fract, 25, 573-578, (2005) · Zbl 1125.94321
[9] Lin, J.S.; Yan, J.J.; Liao, T.L., Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity, Chaos solitons fract, 24, 371-381, (2005) · Zbl 1094.93512
[10] Yoo, W.; Ji, D.; Won, S., Synchronization of two different non-autonomous chaotic systems using fuzzy disturbance observer, Phys lett A, 374, 1354-1361, (2010) · Zbl 1236.34074
[11] Rodriguez, A.; De Leon, J.; Fridman, L., Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer, Chaos solitons fract, 42, 3219-3233, (2009) · Zbl 1198.93184
[12] Oldham, K.B.; Spanier, J., The fractional calculus, (1974), Academic Press New York, London · Zbl 0428.26004
[13] Podlubny, I., Fractional differential equations, (1999), Academic Press · Zbl 0918.34010
[14] Das, S., Functional fractional calculus for system identification and controls, (2008), Springer · Zbl 1154.26007
[15] Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S., Fractional order control of a coupled tank, Nonlinear dyn, 61, 383-397, (2010) · Zbl 1204.93086
[16] Delavari H, Senejohnny DM, Fractional-order controllers for robot manipulator, In: Legnani G, Fassi I, editors. Robotics: state of the art and future trends, New York: Nova Science Publishers; 2012, pp. 187-209. ISBN: 978-1-62100-403-5.
[17] Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S., Fuzzy fractional order sliding mode controller for nonlinear systems, Commun nonlinear sci numer simul, 15, 963-978, (2010) · Zbl 1221.93140
[18] Efe, M.Ö., Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm, IEEE trans syst man cybern part B: cybern, 38, 1561-1570, (2008)
[19] Calderon, A.J.; Vinagre, B.M.; Feliu, V., Fractional order control strategies for power electronic buck converters, Signal process, 86, 2803-2819, (2006) · Zbl 1172.94377
[20] Sierociuk, D.; Dzielinski, A., Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, Int J appl math comput sci, 16, 129-140, (2006) · Zbl 1334.93172
[21] B.M. Vinagre, C.A. Monje, A.J. Calderon, “Fractional Order Systems and Fractional Order Control Actions,” 41st IEEE Int. Conf. on Decision and Control, Las Vegas, NV, pp.15-38, 2002.
[22] Matignon D,. d’Andera-Novel B. Observer Based Controllers for Fractional Differential Systems. In: International Conference. on Decision and Control, San Diego, CA, 1997. pp.4967-4972.
[23] Podlubny, I., Fractional-order systems and PI^λDμ-controllers, IEEE trans autom control, 44, 208-214, (1999) · Zbl 1056.93542
[24] Li, H.; Luo, Y.; Chen, Y., Fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments, IEEE trans control syst technol, 18, 516-520, (2010)
[25] Li, Y.; Chen, Y.Q.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized mittag- Leffler stability, Comput math appl., 59, 1810-1821, (2010) · Zbl 1189.34015
[26] Sabatier, J.; Moze, M.; Farges, C., LMI stability conditions for fractional order systems, Comput math appl., 59, 1594-1609, (2010) · Zbl 1189.34020
[27] Farges, C.; Moze, M.; Sabatier, J., Pseudo state feedback stabilization of commensurate fractional order systems, Automatica, 10, 1730-1734, (2010) · Zbl 1204.93094
[28] Farges C., Sabatier J., Moze M, Fractional order polytopic systems: robust stability and stabilisation, Advances in Difference Equations. 35 (2011). doi:10.1186/1687-1847-2011-35. · Zbl 1267.93132
[29] Tavazoei, M.S.; Haeri, M., Advanced determination of active sliding mode controller parameters in synchronizing different chaotic systems, Chaos solitons fract, 32, 583-591, (2007)
[30] Tavazoei, M.S.; Haeri, M., Synchronization of chaotic fractional-order systems via active sliding mode controller, Phys A, 387, 57-70, (2008)
[31] Brunovský, P., A classification of linear controllable systems, Kybernetika, 6, 173-188, (1970) · Zbl 0199.48202
[32] Li, Y.; Chen, Y.Q.; Podlubny, I., Mittagleffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 1965-1969, (2009) · Zbl 1185.93062
[33] Derivière, S.; Aziz Alaoui, M.A., Principe d’invariance uniforme et estimation d’attracteurs étrange dans R3, 3eme colloque sur le chaos temporel et le chaos spatio-temporel, (2001), France Le Havre, p. 65
[34] Faieghi, M.R.; Delavari, H., Chaos in fractional-order genesio – tesi system and its synchronization, Commun nonlinear sci numer simulat, 17, 731-741, (2012) · Zbl 1239.93020
[35] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J., Theory and applications of fractional differential equations, (2006), Elsevier Amsterdam · Zbl 1092.45003
[36] Tavazoei, M.S.; Haeri, M., Unreliability of frequencydomain approximation in recognizing chaos in fractionalorder systems, IET signal process., 4, 171-181, (2007)
[37] Shuqin, Z., Monotone iterative method for initial value problem involving riemannliouville fractional derivatives, Nonlinear analysis., 71, 2087-2093, (2009) · Zbl 1172.26307
[38] Ladde, G.S.; Lakshmikantham, V.; Vatsala, A.S., Monotone iterative techniques for nonlinear differential equations, (1985), Pitman Pub. Co. Boston · Zbl 0658.35003
[39] Ahmad, B.; Sivasundaram, S., Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipationand retardation, Appl math comput, 197, 515-524, (2008) · Zbl 1142.34049
[40] Shahiri, M.; Ghaderi, R.; Ranjbar, A.; Hosseinnia, S.H.; Momani, S., Chaotic fractional-order coullet system: synchronization and control approach, Commun nonlinear sci numer simulat, 15, 665-674, (2010) · Zbl 1221.37222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.