×

zbMATH — the first resource for mathematics

Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach. (English) Zbl 1253.74007
Summary: We present a novel numerical procedure based on the framework of isogeometric analysis for static, free vibration, and buckling analysis of laminated composite plates using the first-order shear deformation theory. The isogeometric approach utilizes non-uniform rational B-splines to implement for the quadratic, cubic, and quartic elements. Shear locking problem still exists in the stiffness formulation, and hence, it can be significantly alleviated by a stabilization technique. Several numerical examples are presented to show the performance of the method, and the results obtained are compared with other available ones.

MSC:
74A40 Random materials and composite materials
74H45 Vibrations in dynamical problems in solid mechanics
74G60 Bifurcation and buckling
74K20 Plates
65D17 Computer-aided design (modeling of curves and surfaces)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
Software:
Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Reddy, Mechanics of Laminated Composite Plates and Shells Theory and Analysis (2004) · Zbl 1075.74001
[2] Reissner, Bending and stretching of certain types of aeolotropic elastic plates, Journal of Applied Mechanics 28 pp 402– (1961) · Zbl 0100.20904 · doi:10.1115/1.3641719
[3] Stavsky, Bending and stretching of laminated aeolotropic plates, Journal of Engineering Mechanics Division 87 pp 31– (1961)
[4] Dong, On the theory of laminated anisotropic plates and shells, Journal of Aeronautical Science 29 (8) pp 969– (1962) · Zbl 0109.17504
[5] Yang, Elastic wave propagation in heterogeneous plates, International Journal of Solids and Structures 2 pp 665– (1966) · doi:10.1016/0020-7683(66)90045-X
[6] Ambartsumyan, Theory of Anisotropic Plates (1969)
[7] Whitney, Analysis of heterogeneous anisotropic plates, Journal of Applied Mechanics 36 (2) pp 261– (1969) · Zbl 0181.52603 · doi:10.1115/1.3564618
[8] Whitney, The effect of transverse shear deformation in the bending of laminated plates, Journal of Composite Materials 3 pp 534– (1969) · doi:10.1177/002199836900300316
[9] Reissner, The effect of transverse shear deformations on the bending of elastic plates, Journal of Applied Mechanics 12 pp A69– (1945) · Zbl 0063.06470
[10] Reddy, Energy and Variational Methods in Applied Mechanics (1984)
[11] Ferreira, A high order collocation method for the static and vibration analysis of composite plates using a first-order theory, Composite Structures 89 (3) pp 424– (2009) · doi:10.1016/j.compstruct.2008.09.006
[12] Ferreira, Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions, Computer Methods in Applied Mechanics and Engineering 194 pp 4265– (2005) · Zbl 1151.74431 · doi:10.1016/j.cma.2004.11.004
[13] Liew, Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method, Computer Methods in Applied Mechanics and Engineering 192 pp 2203– (2003) · Zbl 1119.74628 · doi:10.1016/S0045-7825(03)00238-X
[14] Liew, Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the P-Ritz method, Journal of Sound and Vibration 198 pp 343– (1996) · doi:10.1006/jsvi.1996.0574
[15] Liew, Differential quadrature method for thick symmetric cross-ply laminates with first-order shear flexibility, International Journal of Solids and Structures 33 pp 2647– (1996) · Zbl 0900.73963 · doi:10.1016/0020-7683(95)00174-3
[16] Liew, Moving least square differential quadrature method and its application to the analysis of shear deformable plates, International Journal for Numerical Methods in Engineering 56 pp 2331– (2003) · Zbl 1062.74658 · doi:10.1002/nme.646
[17] Liew, Bending and buckling of thick symmetric rectangular laminates using the moving least-squares differential quadrature method, International Journal of Mechanical Science 45 pp 95– (2003) · Zbl 1049.74022 · doi:10.1016/S0020-7403(03)00037-7
[18] Ferreira, Buckling and vibration analysis of isotropic and laminated plates by radial basis functions, Composites-Part B 42 pp 592– (2011) · doi:10.1016/j.compositesb.2010.08.001
[19] Reddy, Stability and vibration of isotropic, orthotropic and laminated plates according to a higher order shear deformation theory, Journal of Sound and Vibration 89 pp 157– (1985) · Zbl 0558.73031 · doi:10.1016/0022-460X(85)90383-9
[20] Phan, Analysis of laminated composite plates using a higher-order shear deformation theory, International Journal for Numerical Methods in Engineering 21 pp 2201– (1985) · Zbl 0577.73063 · doi:10.1002/nme.1620211207
[21] Reddy, Buckling and vibration of laminated composite plates using various plate theories, American Institute of Aeronautics and Astronautics Journal 27 (12) pp 1808– (1989) · Zbl 0697.73039 · doi:10.2514/3.10338
[22] Kdheir, Analysis of symmetric cross-ply elastic plates using a higher-order theory, part II: buckling and free vibration, Composite Structures 9 pp 259– (1988) · doi:10.1016/0263-8223(88)90048-7
[23] Khdeir, Analysis of symmetric cross-ply elastic plates using a higher-order theory: part II: buckling and free vibration, Composite Structures 9 pp 259– (1988)
[24] Chakrabarti, Buckling of laminated composite plates by a new element based on higher order shear deformation theory, Mechanics of Composite Materials and Structures 10 (4) pp 303– (2003) · doi:10.1080/10759410306754
[25] Nosier, Free vibration analysis of laminated plates using a layerwise theory, American Institute of Aeronautics and Astronautics Journal 31 (12) pp 2335– (1993) · Zbl 0793.73052 · doi:10.2514/3.11933
[26] Ferreira, Analysis of composite plates using a layerwise deformation theory and multiquadrics discretization, Mechanics of Advanced Materials and Structures 12 (2) pp 99– (2005) · doi:10.1080/15376490490493952
[27] Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates, Journal of Composite Materials 4 pp 20– (1970) · doi:10.1177/002199837000400102
[28] Noor AK Mathers Shear-flexible finite element method of laminated composite plate Technical report 1975
[29] Pagano, Global-local laminate variational model, International Journal of Solids and Structures 19 pp 207– (1983) · Zbl 0507.73061 · doi:10.1016/0020-7683(83)90058-6
[30] Zhen, Free vibration of laminated composite and sandwich plates using global-local higher-order theory, Journal of Sound and Vibration 298 pp 333– (2006) · doi:10.1016/j.jsv.2006.05.022
[31] Touratier, An efficient standard plate theory, International Journal of Engineering Science 29 (8) pp 901– (1991) · Zbl 0825.73299 · doi:10.1016/0020-7225(91)90165-Y
[32] Karama, Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity, International Journal of Solids and Structures 40 pp 1525– (2003) · Zbl 1087.74579 · doi:10.1016/S0020-7683(02)00647-9
[33] Soldatos, A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mechanica 94 pp 195– (1992) · Zbl 0850.73130 · doi:10.1007/BF01176650
[34] Aydogdu, A new shear deformation theory for laminated composite plates, Composite Structures 89 pp 94– (2009) · doi:10.1016/j.compstruct.2008.07.008
[35] Meiche, A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate, International Journal of Mechanical Sciences 53 pp 237– (2011) · doi:10.1016/j.ijmecsci.2011.01.004
[36] Reddy, A refined nonlinear theory of plates with transverse shear deformation, International Journal of Solids and Structures 20 (9-10) pp 881– (1984) · Zbl 0556.73064 · doi:10.1016/0020-7683(84)90056-8
[37] Shimpi, Refined plate theory and its variants, AIAA Journal 40 (1) pp 137– (2002) · doi:10.2514/2.1622
[38] Shimpi, A two variable refined plate theory for orthotropic plate analysis, International Journal of Solids and Structures 43 (22) pp 6783– (2006) · Zbl 1120.74605 · doi:10.1016/j.ijsolstr.2006.02.007
[39] Reddy, Introduction to the Finite Element Method (1993)
[40] Reddy, Mechanics of Laminated Composite Plates (1997) · Zbl 0899.73002
[41] Reis, Computation of moments and stresses in laminated composite plates by the boundary element method, Engineering Analysis with Boundary Element 35 pp 105– (2011) · Zbl 1259.74044 · doi:10.1016/j.enganabound.2010.04.001
[42] Paiva, Modal analysis of anisotropic plates using the boundary element method, Engineering Analysis with Boundary Element 35 pp 1248– (2011) · Zbl 1259.74062 · doi:10.1016/j.enganabound.2011.06.001
[43] Nguyen-Xuan, A smoothed finite element method for plate analysis, Computer Methods in Applied Mechanics and Engineering 197 pp 1184– (2008) · Zbl 1159.74434 · doi:10.1016/j.cma.2007.10.008
[44] Nguyen-Xuan, A node-based smoothed finite element method (NS-FEM) for analysis of Reissner-Mindlin plates, Computational Mechanics 46 pp 679– (2010) · Zbl 1260.74029 · doi:10.1007/s00466-010-0509-x
[45] Nguyen-Thanh, An alternative alpha finite element method free and forced vibration analysis of solids using triangular meshes, Journal of Computational and Applied Mathematics 233 (9) pp 2112– (2010) · Zbl 1423.74910 · doi:10.1016/j.cam.2009.08.117
[46] Nguyen-Thanh, An alternative alpha finite element method with stabilized discrete shear gap technique for analysis of Mindlin-Reissner plates, Finite Elements in Analysis and Design 47 pp 519– (2011) · doi:10.1016/j.finel.2011.01.004
[47] Nguyen-Thanh, A smoothed finite element method for shell analysis, Computer Methods in Applied Mechanics and Engineering 198 (2) pp 165– (2008) · Zbl 1194.74453 · doi:10.1016/j.cma.2008.05.029
[48] Thai-Hoang, A smoothed finite element method for free vibration and buckling analysis of shells, KSCE Journal of Civil Engineering 15 (2) pp 347– (2011) · doi:10.1007/s12205-011-1092-1
[49] Thai-Hoang, An alternative alpha finite element method with discrete shear gap technique for analysis of laminated composite plates, Applied Mathematics and Computation 217 (17) pp 7324– (2011) · Zbl 1415.74048 · doi:10.1016/j.amc.2011.02.024
[50] Rabczuk, Cracking particles: a simplified meshfree methods for arbitrary evolving cracks, International Journal for Numerical Methods in Engineering 61 pp 2316– (2004) · Zbl 1075.74703 · doi:10.1002/nme.1151
[51] Rabczuk, Coupling of meshfree methods with finite elements: basic concepts and test results, Communications in Numerical Methods in Engineering 22 pp 1031– (2006) · Zbl 1109.65082 · doi:10.1002/cnm.871
[52] Rabczuk, A meshfree thin shell for arbitrary evolving cracks based on an external enrichment, Computer Methods in Applied Mechanics and Engineering 16 (2) pp 115– (2006)
[53] Rabczuk, A three dimensional large deformation meshfree method for arbitrary evolving cracks, Computer Methods in Applied Mechanics and Engineering 196 pp 2777– (2007) · Zbl 1128.74051 · doi:10.1016/j.cma.2006.06.020
[54] Rabczuk, A meshfree thin shell method for non-linear dynamic fracture, International Journal for Numerical Methods in Engineering 72 pp 524– (2007) · Zbl 1194.74537 · doi:10.1002/nme.2013
[55] Rabczuk, Discontinuous modelling of shear bands with adaptive meshfree methods, Computer Methods in Applied Mechanics and Engineering 197 pp 641– (2008) · Zbl 1169.74655 · doi:10.1016/j.cma.2007.08.027
[56] Liu, Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates, Composite Structures 78 pp 58– (2007) · doi:10.1016/j.compstruct.2005.08.010
[57] Hughes, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering 194 (39-41) pp 4135– (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[58] Elguedj, B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Computer Methods in Applied Mechanics and Engineering 197 pp 2732– (2008) · Zbl 1194.74518 · doi:10.1016/j.cma.2008.01.012
[59] Cottrell, Isogeometric analysis of structural vibrations, Computer Methods in Applied Mechanics and Engineering 195 (41-43) pp 5257– (2006) · Zbl 1119.74024 · doi:10.1016/j.cma.2005.09.027
[60] Benson, Isogeometric shell analysis: the Reissner-Mindlin shell, Computer Methods in Applied Mechanics and Engineering 199 (5-8) pp 276– (2010) · Zbl 1227.74107 · doi:10.1016/j.cma.2009.05.011
[61] Kiendl, Isogeometric shell analysis with Kirchhoff-Love elements, Computer Methods in Applied Mechanics and Engineering 198 (49-52) pp 3902– (2009) · Zbl 1231.74422 · doi:10.1016/j.cma.2009.08.013
[62] Kiendl, The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches, Computer Methods in Applied Mechanics and Engineering 199 (37-40) pp 2403– (2010) · Zbl 1231.74482 · doi:10.1016/j.cma.2010.03.029
[63] Benson, A large deformation, rotation-free, isogeometric shell, Computer Methods in Applied Mechanics and Engineering 200 (13-16) pp 1367– (2011) · Zbl 1228.74077 · doi:10.1016/j.cma.2010.12.003
[64] Wall, Isogeometric structural shape optimization, Computer Methods in Applied Mechanics and Engineering 197 (33-40) pp 2976– (2008) · Zbl 1194.74263 · doi:10.1016/j.cma.2008.01.025
[65] Kouhia, On stabilized finite element methods for the Reissner-Mindlin plate model, International Journal for Numerical Methods in Engineering 74 (8) pp 1314– (2008) · Zbl 1159.74429 · doi:10.1002/nme.2211
[66] Lyly, A stable bilinear element for Reissner-Mindlin plate model, Methods in Applied Mechanics and Engineering 110 pp 243– (1993) · Zbl 0846.73065 · doi:10.1016/0045-7825(93)90214-I
[67] Veiga, An isogeometric method for the Reissner-Mindlin plate bending problem, Computer Methods in Applied Mechanics and Engineering 209-212 pp 45– (2012) · Zbl 1243.74101 · doi:10.1016/j.cma.2011.10.009
[68] Taylor, Linked interpolation for Reissner-Mindlin plate elements. Part I- A simple triangle, International Journal for Numerical Methods in Engineering 36 pp 3056– (1993) · Zbl 0781.73071 · doi:10.1002/nme.1620361803
[69] Ferreira, Matlab Codes for Finite Element Analysis: Solids and Structures (2008)
[70] Ferreira, Natural frequencies of functionally graded plates by a meshless method, Composite Structures 75 (1-4) pp 593– (2006) · doi:10.1016/j.compstruct.2006.04.018
[71] Roque, A local radial basis functions - Finite differences technique for the analysis of composite plates, Engineering Analysis with Boundary Elements 35 pp 363– (2011) · Zbl 1259.74078 · doi:10.1016/j.enganabound.2010.09.012
[72] Liew, Buckling of rectangular Mindlin plates subjected to partial in-plane edge loads using the radial point interpolation method, International Journal of Solids and Structures 41 pp 1677– (2004) · Zbl 1075.74533 · doi:10.1016/j.ijsolstr.2003.10.022
[73] Leissa, Vibration and buckling of a simply supported rectangular plate subjected to a pair of in-plane concentrated forces, Journal of Sound and Vibration 127 (1) pp 155– (1988) · Zbl 1235.74094 · doi:10.1016/0022-460X(88)90356-2
[74] Timoshenko, Theory of Elastic Stability (1985)
[75] Srinivasm, A refined analysis of composite laminates, Journal of Sound and Vibration 30 pp 495– (1973) · Zbl 0267.73050 · doi:10.1016/S0022-460X(73)80170-1
[76] Pandya, Higher-order shear deformable theories for flexure of sandwich plates-finite element evaluations, International Journal of Solids and Structures 24 pp 419– (1988) · Zbl 0676.73044 · doi:10.1016/0020-7683(88)90090-X
[77] Ferreira, Natural frequencies of shear deformable beams and plates by a RBF-Pseudospectral method, Computer Methods in Applied Mechanics and Engineering 196 pp 134– (2006) · Zbl 1120.74528 · doi:10.1016/j.cma.2006.02.009
[78] Reddy, A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics 51 pp 742– (1984) · Zbl 0549.73062 · doi:10.1115/1.3167719
[79] Akhras, Static and vibrations analysis of anisotropic laminated plates by finite strip method, International Journal of Solids and Structures 30 (22) pp 3129– (1993) · Zbl 0790.73078 · doi:10.1016/0020-7683(93)90143-U
[80] Akhras, Finite strip analysis for anisotropic laminated composite plates using higher-order deformation theory, Computers and Structures 52 (3) pp 471– (1994) · Zbl 0872.73074 · doi:10.1016/0045-7949(94)90232-1
[81] Ferreira, Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method, Composite Structures 34 pp 627– (2003)
[82] Ferreira, A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates, Composite Structures 59 (3) pp 385– (2003) · doi:10.1016/S0263-8223(02)00239-8
[83] Nguyen-Van, Free vibration analysis of laminated plate/shell structures based on FSDT with a stabilized nodal-integrated quadrilateral element, Journal of Sound and Vibration 313 (1-2) pp 205– (2008) · doi:10.1016/j.jsv.2007.11.043
[84] Wang, Free vibration analysis of skew fiber-reinforced composite laminates based on first-order shear deformation plate theory, Journal of Sound and Vibration 63 pp 525– (1997)
[85] Haldar, Free vibration analysis of composite right angle triangular plate using a shear flexible element, Journal of Reinforced Plastics and Composites 22 (3) pp 229– (2003) · doi:10.1177/0731684403022003018
[86] Nguyen-Van, Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations, Computers and Structures 89 pp 612– (2011) · doi:10.1016/j.compstruc.2011.01.005
[87] Huang, Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method, Computer Methods in Applied Mechanics and Engineering 193 (33-35) pp 3471– (2004) · Zbl 1068.74090 · doi:10.1016/j.cma.2003.12.039
[88] Wang, Analysis of rectangular laminated composite plates via FSDT meshless method, International Journal of Mechanical Sciences 44 (7) pp 1275– (2002) · Zbl 1026.74082 · doi:10.1016/S0020-7403(02)00057-7
[89] Fares, Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories, Composite Structures 44 pp 279– (1999) · doi:10.1016/S0263-8223(98)00135-4
[90] Bazilevs, Isogeometric analysis using T-splines, Computer Methods in Applied Mechanics and Engineering 199 (5-8) pp 229– (2010) · Zbl 1227.74123 · doi:10.1016/j.cma.2009.02.036
[91] Nguyen-Thanh, Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Computer Methods in Applied Mechanics and Engineering 200 (21-22) pp 1892– (2011) · Zbl 1228.74091 · doi:10.1016/j.cma.2011.01.018
[92] Nguyen-Thanh, Rotation free isogeometric thin shell analysis using PHT-splines, Computer Methods in Applied Mechanics and Engineering 200 (47-48) pp 3410– (2011) · Zbl 1230.74230 · doi:10.1016/j.cma.2011.08.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.