zbMATH — the first resource for mathematics

A preconditioned Krylov technique for global hydrodynamic stability analysis of large-scale compressible flows. (English) Zbl 1253.76042
Summary: The combination of iterative Krylov-based eigenvalue algorithms and direct numerical simulations (DNS) has proven itself an effective and robust tool in solving complex global stability problems of compressible flows. A Cayley transformation is required to add flexibility to our stability solver and to allow access to specific parts of the full global spectrum which would be out of reach without such a transformation. In order to robustify the overall global stability solver an efficient ILU-based preconditioner has been implemented. With this Cayley-transformed DNS-based Krylov method two flow cases were successfully investigated: (i) a compressible mixing layer, a rather simple but well-known problem, which served as a test case and (ii) a supersonic flow about a swept parabolic body, a challenging large-scale flow configuration.

76E09 Stability and instability of nonparallel flows in hydrodynamic stability
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
Full Text: DOI
[1] Adams, N.A.; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. comput. phys., 127, 27-51, (1996) · Zbl 0859.76041
[2] Arbenz, P.; Hetmaniuk, U.L.; Lehoucq, R.B.; Tuminaro, R.S., A comparison of eigensolvers for large-scale 3D modal analysis using AMG-preconditioned iterative methods, Int. J. numer. methods eng., 64, 204-236, (2005) · Zbl 1093.74021
[3] Bai, Z., Progress in the numerical solution of the nonsymmetric eigenvalue problem, Numer. lin. alg. appl., 2, 3, 219-234, (1992) · Zbl 0838.65033
[4] Balakumar, P.; Malik, M.R., Discrete modes and continuous spectra in supersonic boundary layers, J. fluid mech., 239, 631-656, (1992) · Zbl 0825.76703
[5] Benzi, M., Preconditioning techniques for large linear systems: a survey, J. comput. phys., 182, 418-477, (2002) · Zbl 1015.65018
[6] Benzi, M.; Haws, J.C.; Tu˙ma, M., Preconditioning highly indefinite and nonsymmetric matrices, SIAM J. sci. comput., 22, 1333-1353, (2000) · Zbl 0985.65036
[7] Blumen, W., Shear layer instability of an inviscid compressible fluid, J. fluid mech., 40, 4, 769-781, (1970) · Zbl 0191.56403
[8] Burroughs, E.A.; Romero, L.A.; Lehoucq, R.B.; Salinger, A.G., Linear stability of flow in a differentially heated cavity via large-scale eigenvalue calculations, Int. J. numer. methods heat fluid flow, 14, 803-822, (2004) · Zbl 1086.76511
[9] Crouch, J.D.; Garbaruk, A.; Magidov, D., Predicting the onset of flow unsteadiness based on global instability, J. comput. phys., 224, 2, 924-940, (2007) · Zbl 1123.76018
[10] Crouch, J.D.; Garbaruk, A.; Magidov, D.; Travin, A., Origin of transonic buffet on aerofoils, J. fluid mech., 628, 357-369, (2009) · Zbl 1181.76092
[11] Edwards, W.S.; Tuckerman, L.S.; Friesner, R.A.; Sorensen, D.C., Krylov methods for the incompressible navier – stokes equations, J. comput. phys., 110, 82-102, (1994) · Zbl 0792.76062
[12] Ericsson, T.; Ruhe, A., The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems, Math. comput., 35, 152, 1251-1268, (1980) · Zbl 0468.65021
[13] Freund, R.W., A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. sci. comput., 14, 2, 470-482, (1993) · Zbl 0781.65022
[14] T. Füllenbach, K. Stüben, Algebraic multigrid for selected PDE systems,in: Elliptic and Parabolic Problems, 2002, pp. 399-410.
[15] Garratt, T.J.; Moore, G.; Spence, A., A generalised Cayley transform for the numerical detection of Hopf bifurcations in large systems, (), 177-195 · Zbl 0834.65024
[16] Heeg, R.S.; Geurts, B.J., Spatial instabilities of the incompressible attachment-line flow using sparse matrix jacobi – davidson techniques, Appl. sci. res., 59, 315-329, (1998) · Zbl 0915.76025
[17] Joslin, R.D., Direct simulation of evolution and control of three-dimensional instabilities in attachment-line boundary layers, J. fluid mech., 291, 369-392, (1995) · Zbl 0850.76203
[18] Kitsios, V.; Rodriguez, D.; Theofilis, V.; Ooi, A.; Soria, J., Biglobal stability analysis in curvilinear coordinates of massively separated lifting bodies, J. comput. phys., 228, 19, 7181-7196, (2009) · Zbl 1391.76514
[19] Knoll, D.A.; Keyes, D.E., Jacobian-free newton – krylov methods: a survey of approaches and applications, J. comput. phys., 193, 2, 357-397, (2004) · Zbl 1036.65045
[20] Le Duc, A.; Sesterhenn, J.; Friedrich, R., Instabilities in compressible attachment-line boundary layers, Phys. fluids, 18, 044102, (2006) · Zbl 1185.76862
[21] Lehoucq, R.B.; Meerbergen, K., Using generalized Cayley transformations within an inexact rational Krylov sequence method, SIAM J. matrix anal. appl., 20, 1, 131-148, (1998), (electronic) · Zbl 0931.65035
[22] Lehoucq, R.B.; Salinger, A.G., Large-scale eigenvalue calculations for stability analysis of steady flows on massively parallel computers, Int. J. numer. methods fluids, 36, 309-327, (2001) · Zbl 1037.76036
[23] R.B. Lehoucq, J.A. Scott, An Evaluation of Software for Computing Eigenvalues of Sparse Nonsymmetric Matrices, Preprint MCS-P547-1195, Argonne National Laboratory, Argonne, IL, 1996.
[24] R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide. Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, 1998.
[25] Lele, S.K., Compact finite difference schemes with spectral-like resolution, J. comput. phys., 103, 16-42, (1992) · Zbl 0759.65006
[26] C.J. Mack, P.J. Schmid, Direct numerical simulations of hypersonic flow about a swept parabolic body. Comput. Fluids (2009), submitted for publication.
[27] Mack, C.J.; Schmid, P.J.; Sesterhenn, J.L., Global stability of swept flow around a parabolic body: connecting attachment-line and crossflow modes, J. fluid mech., 611, 205-214, (2008) · Zbl 1151.76469
[28] Maschhoff, K.J.; Sorensen, D.C., A portable implementation of ARPACK for distributed memory parallel architectures, () · Zbl 0886.65034
[29] Meerbergen, K.; Roose, D., The restarted Arnoldi method applied to iterative linear system solvers for the computation of rightmost eigenvalues, SIAM J. matrix anal. appl., 18, 1, 1-20, (1997) · Zbl 0872.65038
[30] Michalke, A., On the inviscid instability of the hyperbolic-tangent velocity profile, J. fluid mech., 19, 543-556, (1964) · Zbl 0129.20302
[31] Morgan, R.B., On restarting the Arnoldi method for large non-symmetric eigenvalue problems, Math. comput., 65, 215, 1213-1230, (1996) · Zbl 0857.65041
[32] Morzynski, M.; Afanasiev, K.; Thiele, F., Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis, Comput. methods appl. mech. eng., 169, 161-176, (1999) · Zbl 0959.76045
[33] Nejat, A.; Ollivier-Gooch, C., Effect of discretization order on preconditioning and convergence of a high-order unstructured Newton-GMRES solver for the Euler equations, J. comput. phys., 227, 2366-2386, (2008) · Zbl 1147.76045
[34] Obrist, D.; Schmid, P.J., On the linear stability of swept attachment-line boundary layer flow. part 1. spectrum and asymptotic behaviour, J. fluid mech., 493, 1-29, (2003) · Zbl 1063.76024
[35] D. Osei-Kuffuor, Y. Saad, A Comparison of Preconditioners for Complex-valued Matrices, Technical Report, University of Minnesota Supercomputing Institute Research Report UMSI 2007/139, 2007.
[36] Robinet, J.-C., Bifurcations in shock-wave/laminar-boundary layer interaction: global instability approach, J. fluid mech., 579, 85-112, (2007) · Zbl 1175.76065
[37] ()
[38] Saad, Y.; Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. stat. comput., 7, 3, 856-869, (1986) · Zbl 0599.65018
[39] Saric, W.S.; Reed, H.L.; White, E.B., Stability and transition of three-dimensional boundary layers, Annu. rev. fluid mech., 35, 413-440, (2003) · Zbl 1039.76018
[40] Schmid, P.J.; Henningson, D.S., Stability and transition in shear flows, Applied mathematical sciences, (2001), Springer, vol. 142
[41] Schulze, J.; Schmid, P.J.; Sesterhenn, J.L., Exponential time integration using Krylov subspaces, Int. J. num. methods fluids, 60, 6, 591-609, (2009) · Zbl 1163.76038
[42] Sesterhenn, J.L., A characteristic-type formulation of the navier – stokes equations for high-order upwind schemes, Comput. fluids, 30, 37-67, (2001) · Zbl 0991.76056
[43] Sorensen, D.C., Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. matrix anal. appl., 13, 1, 357-385, (1992) · Zbl 0763.65025
[44] Sorensen, D.C., Numerical methods for large eigenvalue problems, Acta numer., 11, 519-584, (2002) · Zbl 1105.65325
[45] P.R. Spalart, Direct numerical study of leading-edge contamination. In: AGARD-CP-438, 1988, pp. 5/1-5/13.
[46] Theofilis, V., Advances in global linear instability analysis of nonparallel and three-dimensional flows, Prog. aero. sci., 39, 249-315, (2003)
[47] V. Theofilis, T. Colonius, T., 2004. Three-dimensional Instabilities of Compressible Flow Over Open Cavities: Direct Solution of the BiGlobal Eigenvalue Problem, AIAA Paper 2004-2544.
[48] Theofilis, V.; Fedorov, A.; Obrist, D.; Dallmann, U.C., The extended Görtler-Hämmerlin model for linear instability of three-dimensional incompressible swept attachment-line boundary layer flow, J. fluid mech., 487, 271-313, (2003) · Zbl 1054.76031
[49] Trottenberg, U.; Oosterlee, C.W.; Schüller, A., Multigrid, (2000), Academic Press London
[50] Tuckerman, L.S.; Bertagnolio, F.; Daube, O.; LeQuéré, P.; Barkley, D., Stokes preconditioning for the inverse Arnoldi method, Notes numer. fluid mech., 74, 241-255, (2000) · Zbl 0994.76026
[51] van der Vorst, H.A., Bi-CGSTAB: A fast and smoothly converging variatn of bi-CG for the solution of non-symmetric linear systems, SIAM J. sci. statist. comput., 13, 631-644, (1992) · Zbl 0761.65023
[52] Zhang, J., Preconditioned Krylov subspace methods for solving nonsymmetric matrices from CFD applications, Comput. methods appl. mech. eng., 189, 825-840, (2000) · Zbl 0991.76067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.