zbMATH — the first resource for mathematics

Simulation of hydrogen dispersion by the domain decomposition method. (English) Zbl 1253.76094
Summary: We demonstrate the feasibility of the domain decomposition method in simulating large scale finite element models through the ADVENTURE code, an open source freeware partly developed by the Computational Mechanics Laboratory at Kyushu University. Our model is that of hydrogen dispersion in a partially open space, chosen because of its relevance to the safe use of hydrogen as a potential replacement for fossil fuels. An analogy of the Boussinesq approximation is applied in our simulation. We describe the formulations and the model, followed by some results.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Kanayama H., Tagami D., Chiba M.: Stationary incompressible viscous flow analysis by a domain decomposition method. Decompos. Methods Sci. Eng. XVI, 611–618 (2006)
[2] Kanayama H., Ogino M., Takesue N., Mukaddes A.M.M.: Finite element analysis for stationary incompressible viscous flow analysis by a domain decomposition method. Theor. Appl. Mech. 54, 211–219 (2005)
[3] Kanayama, H., Kume, H., Tagami, D.: Incompressible viscous flow analysis by a domain decomposition method. In: 4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS2004), vol. II, pp. 1–12 (2004)
[4] Kanayama H., Tagami D., Araki T., Kume H.: A stabilization technique for stationary flow problems. Int. J. Comput. Fluid Dyn. 18(4), 297–301 (2004) · Zbl 1221.76116 · doi:10.1080/1061856031000152335
[5] Girault V., Raviart P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, New York (1986) · Zbl 0585.65077
[6] Inoue M., Tsukikawa H., Kanayama H., Matsuura K.: Experimental study on leaking hydrogen dispersion in a partially open space. J. Hydrog. Energy Syst. Soc. Jpn. 33(4), 32–43 (2008) (in Japanese)
[7] Kanayama H., Tsukikawa H., Ndong-Mefane S.B., Sakuragi O.: Finite element simulation of hydrogen dispersion by the analogy of the Boussinesq approximation. J. Comput. Sci. Tech. 2(4), 643–654 (2008) · doi:10.1299/jcst.2.643
[8] Zhang S.L.: GPBi-CG: generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 18, 537–551 (1997) · Zbl 0872.65023 · doi:10.1137/S1064827592236313
[9] van der Vorst H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, London (2003) · Zbl 1023.65027
[10] Glowinski R., Dinh Q.V., Periaux J.: Domain decomposition methods for nonlinear problems in fluid dynamics. Comput. Methods Appl. Mech. Eng. 40, 27–109 (1983) · Zbl 0512.76057 · doi:10.1016/0045-7825(83)90045-2
[11] Quarteroni A., Valli A.: Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, New York (1999) · Zbl 0931.65118
[12] Hasbani Y., Engelman M.: Out-of-core solution of linear equations with non-symmetric coefficient matrix. Comput. Fluid 7, 13–31 (1979) · Zbl 0393.76001 · doi:10.1016/0045-7930(79)90003-3
[13] Yagawa G., Shioya R.: Parallel finite elements on a massively parallel computer with domain decomposition. Comput. Syst. Eng. 4, 495–503 (1993) · doi:10.1016/0956-0521(93)90017-Q
[14] Shioya, R., Yagawa, G.: Iterative domain decomposition FEM with preconditioning technique for large scale problem. In: ECM’99: Progress in Experimental and Computational Mechanics in Engineering and Material Behaviour, pp. 255–260 (1999)
[15] Agarant, V., Cheng, Z., Tchouvelev, A.: CFD modeling of hydrogen releases and dispersion in hydrogen energy station. In: Proceedings of The 15th World Hydrogen Energy Conference (2004)
[16] Swain, M.R., Grilliot, E.S., Swain, M.N.: Risks incurred by hydrogen escaping from containers and conduits. In: Proceedings of the 1998 US DOE Hydrogen Program Review, NREL/CP-570-25315 (1998)
[17] Matsuura K., Kanayama H., Tsukikawa H., Inoue M.: Numerical simulation of leaking hydrogen dispersion behavior in a partially open space. Int. J. Hydrog. Energy 33, 240–247 (2008) · doi:10.1016/j.ijhydene.2007.08.028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.