zbMATH — the first resource for mathematics

Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. (English) Zbl 1253.93017
Summary: This paper brings attention to the chaotic antisynchronization and synchronization for a novel class of chaotic systems with different structure and dimensions by using a new sliding mode control strategy. This approach needs only \(n-1\) controllers, where \(n\) is the number of the salve system dimensions. And our method uses Proportional Integral (PI) surface and saturation function to simplify the task of assigning the performance of the closed-loop error system in sliding motion. Furthermore, sufficient conditions are derived, and representative examples are proposed as well. Finally, numerical simulations are provided to verify the effectiveness and feasibility of the proposed control scheme, which are in agreement with theoretical analysis.

93B12 Variable structure systems
34D06 Synchronization of solutions to ordinary differential equations
93C10 Nonlinear systems in control theory
Full Text: DOI
[1] Pecora, L., Carroll, T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[2] Zhang, J., Small, M.: Complex network from pseudoperiodic time series: Topology vs dynamics. Phys. Rev. Lett. 96, 238701 (2006)
[3] Wang, W.X., Liang, H., Lai, Y.C., et al.: Onset of synchronization in weighted scale-free networks. Chaos 19, 013134 (2009)
[4] Gong, Y.B., Xie, Y.H., Lin, X., et al.: Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks. Chaos Solitons Fractals 43, 96–103 (2010) · doi:10.1016/j.chaos.2010.10.002
[5] Xu, X., Zhang, J., Small, M.: Superfamily phenomena of time series induced networks. Proc. Natl. Acad. Sci. USA 105, 19601–19605 (2008) · Zbl 1202.37118 · doi:10.1073/pnas.0806082105
[6] Guo, H., Lin, S.F., Liu, J.H.: A radial basis function sliding mode controller for chaotic Lorenz system. Phys. Lett. A 351, 257–261 (2006) · Zbl 1234.37055 · doi:10.1016/j.physleta.2005.10.101
[7] Yau, H.T.: Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control. Mech. Syst. Signal Process. 22, 408–418 (2008) · doi:10.1016/j.ymssp.2007.08.007
[8] Wang, X.Y., Song, J.M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14, 3351–3357 (2009) · Zbl 1221.93091 · doi:10.1016/j.cnsns.2009.01.010
[9] Salarieh, H., Alasty, A.: Control of stochastic chaos using sliding mode method. J. Comput. Appl. Math. 225, 135–145 (2009) · Zbl 1162.65062 · doi:10.1016/j.cam.2008.07.032
[10] Li, H.Y., Hu, Y.A.: Robust sliding-mode backstepping design for synchronization control of cross-strict feedback hyperchaotic systems with unmatched uncertainties. Commun. Nonlinear Sci. Numer. Simul. 16, 3904–3913 (2011) · Zbl 1219.93026 · doi:10.1016/j.cnsns.2011.02.031
[11] Chen, D.Y., Zhao, W.L., Ma, X.Y., et al.: No-chattering sliding mode control chaos in Hindmarsh-Rose neurons with uncertain parameters. Comput. Math. Appl. 61, 3161–3171 (2011) · Zbl 1222.37106 · doi:10.1016/j.camwa.2011.04.010
[12] Yessen, M.T.: Controlling chaos and synchronization for new chaotic systems using feedback control. Chaos Solitons Fractals 26, 913–920 (2005) · Zbl 1093.93539 · doi:10.1016/j.chaos.2005.01.047
[13] Sharma, B.B., Kar, I.N.: Observer based synchronization scheme for a class of chaotic systems using contraction theory. Nonlinear Dyn. 63, 429–445 (2011) · doi:10.1007/s11071-010-9813-4
[14] Vincent, U.E., Ucar, A., Laoyea, J.A., et al.: Control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design. Physica C 468, 374–382 (2008) · doi:10.1016/j.physc.2007.11.012
[15] Njah, A.N., Ojo, K.S., Adebayo, G.A., et al.: Generalized control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design. Int. J. Bifurc. Chaos 12, 187–192 (2002) · doi:10.1142/S0218127402004292
[16] El-Gohary, A., Al-Ruzaiza, A.S.: Chaos and adaptive control in two prey, one predator system with nonlinear feedback. Chaos Solitons Fractals 34, 443–453 (2007) · Zbl 1127.92040 · doi:10.1016/j.chaos.2006.03.101
[17] Sun, J., Zhang, J., Zhou, J., et al.: Detecting phase synchronization in noisy data from coupled chaotic oscillators. Phys. Rev. E 77, 046213 (2008)
[18] Salarieh, H., Alasty, A.: Adaptive chaos synchronization in Chua’s systems with noisy parameters. Math. Comput. Simul. 79, 233–241 (2008) · Zbl 1166.34029 · doi:10.1016/j.matcom.2007.11.007
[19] Rahmani, Z., Jahed Motlagh, M.R.: Adaptive control of spatiotemporal chaos in coupled map lattices. Chaos Solitons Fractals 41, 1697–1707 (2009) · Zbl 1198.93113 · doi:10.1016/j.chaos.2008.07.012
[20] Wen, J., Jiang, C.S.: Adaptive fuzzy control for a class of chaotic systems with nonaffine inputs. Commun. Nonlinear Sci. Numer. Simul. 16, 475–492 (2011) · Zbl 1221.93160 · doi:10.1016/j.cnsns.2010.03.015
[21] Huang, Y.S., Wu, M.: Robust decentralized direct adaptive output feedback fuzzy control for a class of large-sale nonaffine nonlinear systems. Inf. Sci. 181, 2392–2404 (2011) · Zbl 1232.93006 · doi:10.1016/j.ins.2010.11.034
[22] Hu, J., Chen, S.H., Chen, L.: Adaptive control for anti-synchronization of Chua’s chaotic system. Phys. Lett. A 339, 455–460 (2005) · Zbl 1145.93366 · doi:10.1016/j.physleta.2005.04.002
[23] Al-Sawalha, M.M., Noorani, M.S.M.: Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters. Commun. Nonlinear Sci. Numer. Simul. 15, 1036–1047 (2011) · Zbl 1221.93123 · doi:10.1016/j.cnsns.2009.05.037
[24] Pan, L., Zhou, W.N., Zhou, L., et al.: Chaos synchronization between two different fractional-order hyperchaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16, 2628–2640 (2011) · Zbl 1221.37220 · doi:10.1016/j.cnsns.2010.09.016
[25] Chen, Y., Li, M.Y., Cheng, Z.F.: Global anti-synchronization of master–slave chaotic modified Chua’s circuits coupled by linear feedback control. Math. Comput. Model. 52, 567–573 (2010) · Zbl 1201.94143 · doi:10.1016/j.mcm.2010.03.056
[26] Zheng, Q., Zhang, X.P., Ren, Z.Z.: Chaos anti-synchronization between different hyperchaotic systems with uncertainty. Int. J. Mod. Phys. B 24, 2163–2173 (2011) · Zbl 1244.37050 · doi:10.1142/S0217979210055664
[27] Njah, A.N., Vincent, U.E.: Synchronization and anti-synchronization of chaos in an extended Bonhöffer–van der Pol oscillator using active control. J. Sound Vib. 319, 41–49 (2009) · doi:10.1016/j.jsv.2008.05.036
[28] Chianga, T.Y., Linb, J.S., Liaob, T.L., et al.: Anti-synchronization of uncertain unified chaotic systems with dead-zone nonlinearity. Nonlinear Anal., Theory Methods Appl. 68, 2629–2637 (2008) · Zbl 1141.34030 · doi:10.1016/j.na.2007.02.009
[29] Wu, Y., Zhou, X.B., Chen, J., et al.: Chaos synchronization of a new 3D chaotic system. Chaos Solitons Fractals 42, 1812–1819 (2009) · Zbl 1198.93020 · doi:10.1016/j.chaos.2009.03.092
[30] Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[31] Zheng, L.Y., Sheng, J.C., Sheng, L.C.: Chaos switch-synchronization for a class of 4-D chaotic systems. Acta Phys. Sin. 56, 707–712 (2007) (in Chinese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.