×

zbMATH — the first resource for mathematics

Adaptive control of a chaotic permanent magnet synchronous motor. (English) Zbl 1253.93064
Summary: This paper proposes a simple adaptive controller design method for a chaotic Permanent Magnet Synchronous Motor (PMSM) based on the sliding mode control theory which has given an effective means to design robust controllers for nonlinear systems with bounded uncertainties. The proposed sliding mode adaptive controller does not require any information on the PMSM parameter and load torque values, thus it is insensitive to model parameter and load torque variations. Simulation results are given to verify that the proposed method can be successfully used to control a chaotic PMSM under model parameter and load torque variations.

MSC:
93C40 Adaptive control/observation systems
34H10 Chaos control for problems involving ordinary differential equations
93B35 Sensitivity (robustness)
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zhang, J., Tang, W.: Control and synchronization for a class of new chaotic systems via liner feedback. Nonlinear Dyn. 58, 675–686 (2009) · Zbl 1183.70075 · doi:10.1007/s11071-009-9509-9
[2] Siewe, M.S., Yamgoue, S.B., Kakmeni, F.M.M., Tchawoua, C.: Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn. 62, 379–389 (2010) · Zbl 1209.93068 · doi:10.1007/s11071-010-9725-3
[3] Kwuimy, C.A.K., Woafo, P.: Dynamics, chaos and synchronization of self-sustained electromechanical systems with clamped-free flexible arm. Nonlinear Dyn. 53, 201–213 (2008) · Zbl 1170.74349 · doi:10.1007/s11071-007-9308-0
[4] Njah, A.N.: Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dyn. 61, 1–9 (2010) · Zbl 1204.93097 · doi:10.1007/s11071-009-9626-5
[5] Fradkov, A.L., Evans, R.J.: Control of chaos: Methods and applications in engineering. Annu. Rev. Control 29, 33–56 (2005) · doi:10.1016/j.arcontrol.2005.01.001
[6] Yassen, M.T.: Chaos control of chaotic dynamical system using backstepping design. Chaos Solitons Fractals 27, 537–548 (2006) · Zbl 1102.37306 · doi:10.1016/j.chaos.2005.03.046
[7] Tanaka, K., Ikeda, T., Wang, H.O.: A unified approach to controlling chaos via LMI-based fuzzy control system design. IEEE Trans. Circuits Syst. I 45, 1021–1040 (1998) · Zbl 0951.93046 · doi:10.1109/81.728857
[8] Pennacchi, P.: Nonlinear effects due to electromechanical interaction in generators with smooth poles. Nonlinear Dyn. 57, 607–622 (2009) · Zbl 1176.74064 · doi:10.1007/s11071-009-9496-x
[9] Chau, K.T., Chen, J.H.: Modeling, analysis, and experimentation of chaos in a switched reluctance drive system. IEEE Trans. Circuits Syst. I 50, 712–716 (2003) · doi:10.1109/TCSI.2003.811030
[10] Gao, Y., Chau, K.T.: Hopf bifurcation and chaos in synchronous reluctance motor drives. IEEE Trans. Energy Convers. 19, 296–302 (2004) · doi:10.1109/TEC.2004.827012
[11] Ge, Z.-M., Lin, G.-H.: The complete, lag and anticipated synchronization of a BLDCM chaotic system. Chaos Solitons Fractals 34, 740–764 (2007) · doi:10.1016/j.chaos.2005.11.013
[12] Li, Z., Park, J.B., Joo, Y.H., Zhang, B., Chen, G.: Bifurcations and chaos in a permanent-magnet synchronous motor. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49, 383–387 (2002) · doi:10.1109/81.989176
[13] Jing, Z., Yu, C., Chen, G.: Complex dynamics in a permanent-magnet synchronous motor model. Chaos Solitons Fractals 22, 831–848 (2004) · Zbl 1129.70329 · doi:10.1016/j.chaos.2004.02.054
[14] Zhang, B., Li, Z., Mao, Z.: Entrainment and migration control of permanent-magnet synchronous motor system. J. Control Theory Appl. 19, 53–56 (2002) · Zbl 1002.93551
[15] Petrovic, V., Ortega, R., Stankovic, A.M.: Interconnection and damping assignment approach of PM synchronous motors. IEEE Trans. Control Syst. Technol. 9, 811–820 (2001) · doi:10.1109/87.960344
[16] Ren, H., Liu, D.: Nonlinear feedback control of chaos in permanent magnet synchronous motor. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 53, 45–50 (2006) · doi:10.1109/TCSII.2005.854592
[17] Zribi, M., Oteafy, A., Smaoui, N.: Controlling chaos in the permanent magnet synchronous motor. Chaos Solitons Fractals 41, 1266–1276 (2009) · doi:10.1016/j.chaos.2008.05.019
[18] Loria, A.: Robust linear control of (chaotic) permanent-magnet synchronous motors with uncertainties. IEEE Trans. Circuits Syst. I, Regul. Pap. 56, 2109–2122 (2009) · doi:10.1109/TCSI.2008.2011587
[19] Slotine, J.-J., Li, W.: Applied Nonlinear Control. Prentice Hall, New York (1991) · Zbl 0753.93036
[20] Ioannou, P.A., Sun, J.: Robust Adaptive Control. Prentice Hall, New York (1995) · Zbl 0747.93048
[21] Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22, 212–222 (1977) · Zbl 0382.93036 · doi:10.1109/TAC.1977.1101446
[22] Astrom, K.J., Witternmark, B.: Computer-Controlled Systems–Theory and Design. Prentice Hall, New York (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.