×

zbMATH — the first resource for mathematics

A new approach to the bipartite fundamental bound. (English) Zbl 1254.05054
The author defined taut graphs as bipartite distance regular graphs that satisfy an inequality proved in [M. S. MacLean, Discrete Math 225, No. 1–3, 193–216 (2000; Zbl 1001.05124)]. Here the author gives a new linear-algebraic characterization of taut graphs.

MSC:
05C12 Distance in graphs
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05E30 Association schemes, strongly regular graphs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bannai, E.; Ito, T., Algebraic combinatorics I: association schemes, (1984), Benjamin, Cummings London · Zbl 0555.05019
[2] Brouwer, A.E.; Cohen, A.M.; Neumaier, A., Distance-regular graphs, (1989), Springer Berlin · Zbl 0747.05073
[3] Curtin, B., 2-homogeneous bipartite distance-regular graphs, Discrete math., 187, 39-70, (1998) · Zbl 0958.05143
[4] Godsil, C.D., Algebraic combinatorics, (1993), Chapman and Hall, Inc. New York · Zbl 0814.05075
[5] Jurišić, A.; Koolen, J.; Terwilliger, P., Tight distance-regular graphs, J. algebraic combin., 12, 163-197, (2000) · Zbl 0959.05121
[6] MacLean, M., An inequality involving two eigenvalues of a bipartite distance-regular graph, Discrete math., 225, 193-216, (2000) · Zbl 1001.05124
[7] MacLean, M., Taut distance-regular graphs of odd diameter, J. algebraic combin., 17, 125-147, (2003) · Zbl 1014.05072
[8] MacLean, M.; Terwilliger, P., Taut distance-regular graphs and the subconstituent algebra, Discrete math., 306, 1694-1721, (2006) · Zbl 1100.05104
[9] MacLean, M.; Terwilliger, P., The subconstituent algebra of a bipartite distance-regular graph: thin modules with endpoint two, Discrete math., 308, 1230-1259, (2008) · Zbl 1136.05076
[10] Nomura, K., Homogeneous graphs and regular near polygons, J. combin. theory ser. B, 60, 63-71, (1994) · Zbl 0793.05130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.