×

A new tree method for pricing financial derivatives in a regime-switching mean-reverting model. (English) Zbl 1254.91726

Summary: This paper develops a new tree method for pricing financial derivatives in a regime-switching mean-reverting model. The tree achieves full node recombination and grows linearly as the number of time steps increases. Conditions for non-negative branch probabilities are presented. The weak convergence of the discrete tree approximations to the continuous regime-switching mean-reverting process is established. To illustrate the application in mathematical finance, the recombining tree is used to price commodity options and zero-coupon bonds. Numerical results are provided and compared.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aingworth, D.D.; Das, S.R.; Motwani, R., A simple approach for pricing equlty options with Markov switching state variables, Quantitative finance, 6, 95-105, (2006) · Zbl 1136.91410
[2] Bollen, N.P.B., Valuing options in regime-switching models, Journal of derivatives, 6, 38-49, (1998)
[3] Boyle, P.; Draviam, T., Pricing exotic options under regime switching, Insurance: mathematics and econimics, 40, 267-282, (2007) · Zbl 1141.91420
[4] Buffington, J.; Elliott, R.J., American options with regime switching, International journal of theoretical applied finance, 5, 497-514, (2002) · Zbl 1107.91325
[5] Eloe, P.; Liu, R.H., Upper and lower solutions for regime-switching diffusions with applications in financial mathematics, SIAM journal on applied mathematics, 71, 4, 1354-1371, (2011) · Zbl 1238.91131
[6] Eloe, P.; Liu, R.H.; Sun, J.Y., Double barrier option under regime-switching exponential Mean-reverting process, International journal of computer mathematics, 86, 6, 964-981, (2009) · Zbl 1163.91393
[7] Guo, X., Information and option pricings, Quantitative finance, 1, 38-44, (2000)
[8] Guo, X.; Zhang, Q., Closed-form solutions for perpetual American put options with regime switching, SIAM journal on applied mathematics, 64, 2034-2049, (2004) · Zbl 1061.90082
[9] Hardy, M.R., A regime-switching model for long-term stock returns, North American actuarial journal, 5, 41-53, (2001) · Zbl 1083.62530
[10] Khaliq, A.Q.M.; Liu, R.H., New numerical scheme for pricing American option with regime-switching, International journal of theoretical applied finance, 12, 3, 319-340, (2009) · Zbl 1204.91127
[11] Liu, R.H., Regime-switching recombining tree for option pricing, International journal of theoretical applied finance, 13, 3, 479-499, (2010) · Zbl 1233.91284
[12] Liu, R.H.; Zhang, Q., Valuation of guaranteed equity-linked life insurance under regime-switching model, Dynamic systems and applications, 20, 101-128, (2011) · Zbl 1234.93095
[13] Liu, R.H.; Zhang, Q.; Yin, G., Option pricing in a regime switching model using the fast Fourier transform, Journal of applied mathematics and stochastic analysis, (2006), Article ID 18109 · Zbl 1140.91402
[14] Yao, D.D.; Zhang, Q.; Zhou, X.Y., A regime-switching model for European options, (), 281-300 · Zbl 1136.91015
[15] Bansal, R.; Zhou, H., Term structure of interest rates with regime shifts, Journal of finance, 57, 5, 1997-2043, (2002)
[16] Landén, C., Bond pricing in a hidden Markov model of the short rate, Finance stochastics, 4, 371-389, (2000) · Zbl 1016.91046
[17] Siu, T.K., Bond pricing under a Markovian regime-switching jump-augmented vasicek model via stochastic flows, Applied mathematics and computation, 216, 11, 3184-3190, (2010) · Zbl 1194.91088
[18] Chen, S.; Insley, M., Regime switching in stochastic models of commodity prices: an application to an optimal tree harvesting problem, Journal of economic dynamics and control, 36, 201-219, (2012) · Zbl 1238.91111
[19] Clewlow, L.; Strickland, C., Energy derivatives: pricing and risk management, (2000), Lacima Publications London, UK
[20] Lucia, J.; Schwartz, E., Electricity prices and power derivatives: evidence from the nordic power exchange, Review of derivatives research, 5, 5-50, (2002) · Zbl 1064.91508
[21] Zhou, X; Yin, G, Markowitz’s Mean-variance portfolio selection with regime switching: a continuous-time model, SIAM journal on control and optimization, 42, 1466-1482, (2003) · Zbl 1175.91169
[22] Zhang, Q., Stock trading: an optimal selling rule, SIAM journal on control and optimization, 40, 64-87, (2001) · Zbl 0990.91014
[23] Yin, G.; Liu, R.H.; Zhang, Q., Recursive algorithms for stock liquidation: a stochastic optimization approach, SIAM journal on optimization, 13, 240-263, (2002) · Zbl 1021.91022
[24] Zhang, Q.; Yin, G.; Liu, R.H., A near-optimal selling rule for a two-time-scale market model, SIAM journal on multiscale modeling and simulation, 4, 1, 172-193, (2005) · Zbl 1108.91031
[25] Yin, G.; Zhang, Q.; Liu, F.; Liu, R.H.; Cheng, Y., Stock liquidation via stochastic approximation using NASDAQ daily and intra-day data, Mathematical finance, 16, 1, 217-236, (2006) · Zbl 1128.91031
[26] Eloe, P.; Liu, R.H.; Yatsuki, M.; Yin, G.; Zhang, Q., Optimal selling rules in a regime-switching exponential Gaussian diffusion model, SIAM journal on applied mathematics, 69, 3, 810-829, (2008) · Zbl 1175.91079
[27] Yin, G.; Zhu, C., Hybrid switching diffusions: properties and applications, (2010), Springer · Zbl 1279.60007
[28] Albanese, C., Affine lattice models, International journal of theoretical applied finance, 8, 223-238, (2005) · Zbl 1088.60086
[29] Chang, L.B; Palmer, K., Smooth convergence in the binomial model, Finance and stochastics, 11, 91-105, (2007) · Zbl 1142.91032
[30] Cox, J.; Ross, S.; Rubinstein, M., Option pricing, a simplified approach, Journal of financial economics, 7, 229-263, (1979) · Zbl 1131.91333
[31] Diener, F.; Diener, M., Asymptotics of the price oscillations of an European call option in a tree model, Mathematical finance,, 14, 271-293, (2004) · Zbl 1124.91332
[32] Florescu, I.; Viens, F.G., Stochastic volatility: option pricing using a multinomial recombining tree, Applied mathematical finance, 15, 151-181, (2008) · Zbl 1134.91372
[33] He, H., Convergence from discrete to continuous time contingent claims prices, The review of finanical studies, 3, 523-546, (1990)
[34] Heston, S.; Zhou, G.F., On the rate of convergence of discrete-time contingent claims, Mathematical finance, 10, 53-75, (2000) · Zbl 1034.91041
[35] Hilliard, J.E.; Schwartz, A., Binomial option pricing under stochastic volatility and correlated state variables, Journal of derivatives, fall, 23-39, (1996)
[36] Nelson, D.B.; Ramaswamy, K., Simple binomial processes as diffusion approximations in financial models, The review of finanical studies, 3, 393-430, (1990)
[37] Primbs, J.A.; Rathinam, M.; Yamada, Y., Option pricing with a pentanomial lattice model that incorporates skewness and kurtosis, Applied mathematical finance, 14, 1-17, (2007) · Zbl 1281.91170
[38] Walsh, J.B., The rate of convergence of the binomial tree scheme, Finance and stochastics, 7, 337-361, (2003) · Zbl 1062.91027
[39] Brigo, D.; Mercurio, F., Interest rate models: theory and practice, (2001), Springer · Zbl 1038.91040
[40] Hull, J.C., Options, futures, and other derivatives, (2006), Prentice Hall · Zbl 1087.91025
[41] Schwartz, E.S., The stochastic behavior of commodity prices: implications for valuation and hedging, Journal of finance, 52, 923-973, (1982)
[42] Hull, J.; A, White, Numerical procedures for implementing term structure models I: single-factor models, Journal of derivatives, 2, 1, 7-16, (1994)
[43] Hull, J.; White, A., (), 26-36
[44] Yin, G.; Zhang, Q.; Badowski, G., Discrete-time singularly perturbed Markov chains: aggregation, occupation measures, and switching diffusion limit, Advances in applied probability, 35, 449-476, (2003) · Zbl 1048.60058
[45] Caister, N.C.; Govinder, K.S.; O’Hara, J.G., Solving a nonlinear PDE that prices real options using utility based pricing methods, Nonlinear analysis: real world applications, 12, 4, 2408-2415, (2011) · Zbl 1231.91469
[46] Mariani, M.C.; SenGupta, I., Solutions to an integro-differential parabolic problem arising in the pricing of financial options in a Lévy market, Nonlinear analysis: real world applications, 12, 6, 3103-3113, (2011) · Zbl 1231.35266
[47] Nikolopoulos, C.V.; Yannacopoulos, A.N., A model for optimal stopping in advertisement, Nonlinear analysis: real world applications, 11, 3, 1229-1242, (2010) · Zbl 1208.60040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.