×

Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission. (English) Zbl 1254.92085

Summary: The dynamics of multi-group SEIR epidemic models with distributed and infinite delay and nonlinear transmission are investigated. We derive the basic reproduction number \(R_{0}\) and establish that the global dynamics are completely determined by the values of \(R_{0}\): if \(R_{0}\leq 1\), then the disease-free equilibrium is globally asymptotically stable; if \(R_{0}>1\), then there exists a unique endemic equilibrium which is globally asymptotically stable. Our results contain those for single-group SEIR models with distributed and infinite delays. In the proof of global stability of the endemic equilibrium, we exploit a graph-theoretical approach to the method of Lyapunov functionals. The biological significance of the results is also discussed.

MSC:

92D30 Epidemiology
37N25 Dynamical systems in biology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lloyd, A.L.; Jansen, V.A.A., Spatiotemporal dynamics of epidemics: synchrony in metapopulation models, Math. biosci., 188, 1-16, (2004) · Zbl 1036.92029
[2] Lloyd, A.L.; May, R.M., Spatial heterogeneity in epidemic models, J. theoret. biol., 179, 1-11, (1996)
[3] Thieme, H.R., Mathematics in population biology, (2003), Princeton University Press Princeton · Zbl 1054.92042
[4] Lajmanovich, A.; York, J.A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. biosci., 28, 221-236, (1976) · Zbl 0344.92016
[5] Beretta, E.; Capasso, V., Global stability results for a multigroup SIR epidemic model, (), 317-342 · Zbl 0684.92015
[6] Hethcote, H.W., An immunization model for a heterogeneous population, Theor. popul. biol., 14, 338-349, (1978) · Zbl 0392.92009
[7] Hethcote, H.W.; Thieme, H.R., Stability of the endemic equilibrium in epidemic models with subpopulations, Math. biosci., 75, 205-227, (1985) · Zbl 0582.92024
[8] Lin, X.; So, J.W.-H., Global stability of the endemic equilibrium and uniform persistence in epidemic models with subpopulations, J. aust. math. soc. ser. B, 34, 282-295, (1993) · Zbl 0778.92020
[9] Huang, W.; Cooke, K.L.; Castillo-Chavez, C., Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission, SIAM J. appl. math., 52, 835-854, (1992) · Zbl 0769.92023
[10] Guo, H.; Li, M.Y.; Shuai, Z., Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. appl. math. Q., 14, 259-284, (2006) · Zbl 1148.34039
[11] Guo, H.; Li, M.Y.; Shuai, Z., A graph-theoretic approach to the method of global Lyapunov functions, Proc. amer. math. soc., 136, 2793-2802, (2008) · Zbl 1155.34028
[12] Li, M.Y.; Shuai, Z.; Wang, C., Global stability of multi-group epidemic models with distributed delays, J. math. anal. appl., 361, 38-47, (2010) · Zbl 1175.92046
[13] Liu, S.; Wang, S.; Wang, L., Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear anal. RWA, 12, 119-127, (2011) · Zbl 1208.34125
[14] Ding, D.; Ding, X., Global stability of multi-group vaccination epidemic models with delays, Nonlinear anal. RWA, 12, 1991-1997, (2011) · Zbl 1215.92038
[15] Kuniya, T., Global stability analysis with a discretization approach for an age-structured multigroup SIR epidemic model, Nonlinear anal. RWA, 12, 2640-2655, (2011) · Zbl 1219.35330
[16] Zhou, L.; Fan, M., Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear anal. RWA, 13, 312-324, (2012) · Zbl 1238.37041
[17] Wang, L.; Chen, L.; Nieto, J.J., The dynamics of an epidemic model for pest control with impulsive effect, Nonlinear anal. RWA, 11, 1374-1386, (2010) · Zbl 1188.93038
[18] Gao, S.; Liu, Y.; Nieto, J.J.; Andrade, H., Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission, Math. comput. simul., 81, 1855-1868, (2011) · Zbl 1217.92066
[19] Röst, G.; Wu, J., SEIR epidemiological with varying infectivity and infinite delay, Math. biosci. eng., 5, 389-402, (2008) · Zbl 1165.34421
[20] Atkinson, F.V.; Haddock, J.R., On determining phase spaces for functional differential equations, Funkcial. ekvac., 31, 331-347, (1988) · Zbl 0665.45004
[21] Hino, Y.; Murakami, S.; Naito, T., ()
[22] Hale, J.; Verduyn Lunel, S., ()
[23] Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A.J., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. math. biol., 28, 365-382, (1990) · Zbl 0726.92018
[24] Haddock, J.R.; Terjéki, J., Liapunov – razumikhin functions and an invariance principle for functional-differential equations, J. differential equations, 48, 95-122, (1983) · Zbl 0531.34058
[25] Haddock, J.R.; Krisztin, T.; Terjéki, J., Invariance principles for autonomous functional-differential equations, J. integral equations, 10, 123-136, (1985) · Zbl 0592.34047
[26] Ruess, W.M.; Summers, W.H., Linearized stability for abstract differential equations with delay, J. math. anal. appl., 198, 310-336, (1996) · Zbl 0861.34046
[27] Li, M.Y.; Graef, J.R.; Wang, L.C.; Karsai, J., Global dynamics of a SEIR model with a varying total population size, Math. biosci., 160, 191-213, (1999) · Zbl 0974.92029
[28] Bhatia, N.P.; Szegö, G.P., ()
[29] Smith, H.L.; Waltman, P., The theory of the chemostat: dynamics of microbial competition, (1995), Cambridge University Press Cambridge · Zbl 0860.92031
[30] Li, M.Y.; Shuai, Z., Global-stability problem for coupled systems of differential equations on networks, J. differential equations, 248, 1-20, (2010) · Zbl 1190.34063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.