×

zbMATH — the first resource for mathematics

Robust active sliding mode anti-synchronization of hyperchaotic systems with uncertainties and external disturbances. (English) Zbl 1254.93045
Summary: In this paper, we demonstrate that anti-synchronization can coexist in two different hyperchaotic systems with terms of parametric uncertainty and external disturbances using the robust active sliding mode control method. By using rigorous mathematical methods, a sufficient condition is given for the stability of error dynamics based on the Lyapunov stability theory where the controllers are designed by using the sum of the relevant variables in hyperchaotic systems. Numerical results are presented to justify the theoretical analysis.

MSC:
93B12 Variable structure systems
34D06 Synchronization of solutions to ordinary differential equations
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
34H10 Chaos control for problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pecora, L.M.; Carroll, T.M., Synchronization of chaotic systems, Phys. rev. lett., 64, 821-830, (1990) · Zbl 0938.37019
[2] Chen, G.; Dong, X., From chaos to order, (1998), World Scientific Singapore
[3] Bennett, M.; Schatz, M.F.; Rockwood, H.; Wiesenfeld, Huygens, K., Clocks, proc. R. soc. A, 458, 563-579, (2002)
[4] Hu, G.; Zhang, Y.; Cerdeira, H.A.; Chen, S., From low-dimensional synchronous chaos to high-dimensional desynchronous spatiotemporal chaos in coupled systems, Phys. rev. lett., 85, 3377-3380, (2000)
[5] Ho, M.C.; Hung, Y.C.; Chou, C.H., Phase and anti-phase synchronization of two chaotic systems by using active control, Phys. lett. A., 296, 43-48, (2002) · Zbl 1098.37529
[6] Uchida, A.; Liu, Y.; Fischer, I.; Davis, P.; Aida, T., Chaotic antiphase dynamics and synchronization in multimode semiconductor lasers, Phys. rev. A, 64, 023801-023807, (2001)
[7] Li, Guo-Hui; Zhou, Shi-Ping, Anti-synchronization in different chaotic systems, Chaos, solitons & fractals., 32, 516-520, (2007)
[8] El-Dessoky, M., Synchronization and anti-synchronization of a hyperchaotic Chen system, Chaos, solitons & fractals., 39, 4, 1790-1797, (2009) · Zbl 1197.37026
[9] Al-Sawalha, M.M.; Noorani, M.S.M., Chaos anti-synchronization between two novel different hyperchaotic systems, Chin. phys. lett, 25, 8, 2743-2746, (2008)
[10] Al-Sawalha, M.M.; Noorani, M.S.M., Active anti-synchronization between identical and distinctive hyperchaotic systems, Open systems & information dynamics, 15, 4, 371-382, (2008) · Zbl 1188.70060
[11] Al-Sawalha, M.M.; Noorani, M.S.M., Anti-synchronization of chaotic systems with uncertain parameters via adaptive control, Phys. lett. A., 373, 32, 2852-2857, (2009) · Zbl 1233.93056
[12] Huang, J., Adaptive synchronization between different hyperchaotic systems with fully uncertain parameters, Phys. lett. A., 372, 4799-4804, (2008) · Zbl 1221.93127
[13] Wua, X.; Guana, Z.H.; Wua, Z., Adaptive synchronization between two different hyperchaotic systems, Nonlinear anal., 68, 1346-1351, (2008)
[14] Park, J.H., Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos solitons fractals, 26, 959-964, (2005) · Zbl 1093.93537
[15] Al-Sawalha, M.M.; Noorani, M.S.M., On anti-synchronization of chaotic systems via nonlinear control, Chaos, solitons & fractals, 42, 1, 170-179, (2009) · Zbl 1198.93145
[16] Al-Sawalha, M.M.; Noorani, M.S.M., Anti-synchronization of two hyperchaotic systems via nonlinear control, Commun. nonlin. sci. numer. simul., 14, 8, 3402-3411, (2009) · Zbl 1221.37210
[17] Haeri, M.; Tavazoei, M.S.; Naseh, M.R., Synchronization of uncertain chaotic systems using active sliding mode control, Chaos, solitons & fractals, 33, 4, 1230-1239, (2007) · Zbl 1138.93045
[18] Zhang, H.; Ma, X.K.; Liu, W.Z., Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos, solitons & fractals, 21, 5, 1249-1257, (2004) · Zbl 1061.93514
[19] Haeri, M.; Emadzadeh, A.A., Synchronizing different chaotic systems using active sliding mode control, Chaos, solitons & fractals, 31, 1, 119-129, (2007) · Zbl 1142.93394
[20] Jun-Juh, Y.; Cheng-Fang, H.; Jui-Sheng, L., Robust synchronization of chaotic behavior in unidirectional coupled RCLSJ models subject to uncertainties, Nonlinear anal. RWA, 10, 3091-3097, (2009) · Zbl 1171.37019
[21] W. Jawaada, M.S.M. Noorani, M.M. Al-Sawalha, Active sliding mode control anti-synchronization of chaotic systems with uncertainties and external disturbances. Journal of Applied Mathematics (in press). · Zbl 1254.93045
[22] Edwards, C.; Spurgeon, S.; Patton, R., Sliding mode observers for fault detection and isolation, Automatica, 36, 541-553, (2000) · Zbl 0968.93502
[23] Yanga, C.; Geb, Z.; Changb, C.; Li b, S., Chaos synchronization and chaos control of quantum-CNN chaotic system by variable structure control and impulse control, Nonlinear anal. RWA, 11, 1977-1985, (2010) · Zbl 1188.93022
[24] Chen, A.; Lu, J.; Yu, S., Generating hyperchaotic L attractor via state feedback control, Physica A, 364, 103-110, (2006)
[25] Yuxia, L.; Wallace, K; Chen, G., Generating hyperchaos via state feedback control, Int. J. bifurcat chaos, 15, 3367-3375, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.