×

zbMATH — the first resource for mathematics

Robust function projective synchronization of two different chaotic systems with unknown parameters. (English) Zbl 1254.93076
Summary: This paper deals with the function projective synchronization problem of two different chaotic systems with unknown and perturbed parameters. The parameter perturbations are assumed to appear in both drive and response systems with perturbations about the nominal parameter values. A new robust function projective synchronization method is proposed, which is able to overcome random uncertainties of all model parameters. Corresponding numerical simulations are performed to verify and illustrate the analytical results.

MSC:
93B51 Design techniques (robust design, computer-aided design, etc.)
37N35 Dynamical systems in control
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34D06 Synchronization of solutions to ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
93C15 Control/observation systems governed by ordinary differential equations
93C73 Perturbations in control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Physical review letters, 64, 821-824, (1990) · Zbl 0938.37019
[2] Wu, X.; Li, J.; Chen, G., Chaos in the fractional order unified system and its synchronization, Journal of the franklin institute, 345, 392-401, (2008) · Zbl 1166.34030
[3] Grassi, G., Propagation of projective synchronization in a series connection of chaotic systems, Journal of the franklin institute, 347, 438-451, (2010) · Zbl 1185.93075
[4] Li, X.; Cao, J., Adaptive synchronization for delayed neural networks with stochastic perturbation, Journal of the franklin institute, 345, 779-791, (2008) · Zbl 1169.93350
[5] Zhou, Z.; Hu, C.; Chen, M.; He, M., A robust APD synchronization scheme and its application to secure communication, Journal of the franklin institute, 346, 808-817, (2009) · Zbl 1298.93190
[6] Rosenblum, M.G.; Pikovsky, A.S.; Kurths, J., Phase synchronization of chaos oscillators, Physical review letters, 76, 1804-1807, (1996)
[7] Rulkov, N.F.; Sushchik, M.M.; Tsimring, L.S., Generalized synchronization of chaos in directionally coupled chaotic systems, Physical review E, 51, 980-994, (1995)
[8] Rosenblum, M.G.; Pikovsky, A.S.; Kurths, J., From phase to lag synchronization in coupled chaotic oscillators, Physical review letters, 78, 4193-4196, (1997)
[9] Hramov, A.E.; Koronovskii, A.A., An approach to chaotic synchronization, Chaos, 14, 603-610, (2004) · Zbl 1080.37029
[10] Mainieri, R.; Rehacek, J., Projective synchronization in three-dimensional chaotic systems, Physical review letters, 82, 3042-3045, (1999)
[11] Park, J.H., Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos, solitons & fractals, 34, 1552-1559, (2007) · Zbl 1152.93407
[12] Park, J.H., Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, Journal of computational and applied mathematics, 213, 288-293, (2008) · Zbl 1137.93035
[13] Tang, X.; Lu, J.; Zhang, W., The FPS of chaotic system using backstepping design, China journal of dynamics and control, 5, 216-219, (2007)
[14] Du, H.; Zeng, Q.; Wang, C.; Ling, M., Function projective synchronization in coupled chaotic systems, Nonlinear analysis: real world applications, 11, 705-712, (2010) · Zbl 1181.37039
[15] Du, H.; Zeng, Q.; Wang, C., A general method for function projective synchronization, International journal of innovative computing, information and control, 5, 2239-2248, (2009)
[16] Zhang, R.; Yang, Y.; Xu, Z.; Hu, M., Function projective synchronization in drive-response dynamical network, Physics letters A, 374, 3025-3028, (2010) · Zbl 1237.34034
[17] Wu, Z.; Fu, X., Adaptive function projective synchronization of discrete chaotic systems with unknown parameters, Chinese physics letters, 27, 050502, (2010)
[18] Park, J., Further results on functional projective synchronization of Genesio-Tesi chaotic system, Modern physics letters B, 23, 1889-1895, (2009) · Zbl 1168.37311
[19] Chen, Y.; Li, X., Function projective synchronization between two identical chaotic systems, International journal of modern physics C, 18, 883-888, (2007) · Zbl 1139.37301
[20] Chen, Y.; An, H.L.; Li, Z.B., The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems, Applied mathematics and computation, 197, 96-110, (2008) · Zbl 1136.93410
[21] Luo, R.Z., Adaptive function project synchronization of Rössler hyperchaotic system with uncertain parameters, Physics letters A, 372, 3667-3671, (2008) · Zbl 1220.37025
[22] Du, H.; Zeng, Q.; Wang, C., Function projective synchronization of different chaotic systems with uncertain parameters, Physics letters A, 372, 5402-5410, (2008) · Zbl 1223.34077
[23] Shen, L.; Liu, W.; Ma, J., Robust function projective synchronization of a class of uncertain chaotic systems, Chaos, solitons & fractals, 42, 1292-1296, (2009) · Zbl 1198.93019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.