×

Performance analysis of the auxiliary model-based least-squares identification algorithm for one-step state-delay systems. (English) Zbl 1255.93132

Summary: Based on the input-output representation of one-step state-delay systems, we use the auxiliary model-based recursive least-squares algorithm to estimate the parameters of the systems and study the convergence of the proposed algorithm by using the stochastic process theory. A simulation example is provided.

MSC:

93E10 Estimation and detection in stochastic control theory
93E12 Identification in stochastic control theory
93E24 Least squares and related methods for stochastic control systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1080/00207161003643005 · Zbl 1241.65037
[2] DOI: 10.1080/00207160802217201 · Zbl 1193.65056
[3] DOI: 10.1016/j.dsp.2009.10.030
[4] Ding F., Appl. Math. Model. (2012)
[5] DOI: 10.1016/j.automatica.2005.03.026 · Zbl 1086.93063
[6] DOI: 10.1016/j.automatica.2006.07.024 · Zbl 1140.93488
[7] Ding F., Int. J. Adapt. Control Signal Process. 24 (7) pp 540– (2010)
[8] DOI: 10.1002/acs.1266 · Zbl 1263.93215
[9] Ding, F., Shi, Y. and Chen, T. 2005.A new identification algorithm for multi-input ARX systems764–769. IEEE International Conference on Mechatronics and Automation, Niagara Fall, Ontario, Canada, July 29–August 1
[10] DOI: 10.1016/j.sysconle.2006.10.026 · Zbl 1130.93055
[11] DOI: 10.1016/j.sigpro.2009.03.020 · Zbl 1178.94137
[12] DOI: 10.1016/j.automatica.2008.08.007 · Zbl 1158.93365
[13] DOI: 10.1016/j.mcm.2009.11.016 · Zbl 1190.62157
[14] DOI: 10.1016/j.automatica.2011.05.007 · Zbl 1232.62043
[15] DOI: 10.1016/j.dsp.2010.06.006
[16] DOI: 10.1109/TAC.2011.2158137 · Zbl 1368.93744
[17] DOI: 10.1177/0959651811409491
[18] DOI: 10.1243/09596518JSCE888
[19] Goodwin G. C., Adaptive Filtering, Prediction and Control (1984) · Zbl 0653.93001
[20] Gu Y., Appl. Math. Model. (2012)
[21] DOI: 10.1016/j.camwa.2011.09.067 · Zbl 1236.93150
[22] DOI: 10.1016/j.mcm.2011.08.023 · Zbl 1255.93147
[23] DOI: 10.1016/j.amc.2009.07.012 · Zbl 1177.65095
[24] DOI: 10.1243/09596518JSCE686
[25] DOI: 10.1016/j.camwa.2010.01.030 · Zbl 1193.60057
[26] Ljung L., System Identification: Theory for the User, 2. ed. (1999) · Zbl 0615.93004
[27] DOI: 10.1080/00207170903273987 · Zbl 1222.93228
[28] DOI: 10.1109/TAC.2009.2020638 · Zbl 1367.93538
[29] Shi Y., Int. J. Robust Nonlinear Control, Special Issue on Control with Limited Information (Part II) 19 (18) pp 1976– (2009)
[30] DOI: 10.1049/iet-cta.2010.0416
[31] DOI: 10.1016/j.dsp.2009.12.006
[32] DOI: 10.1016/j.sigpro.2010.11.004 · Zbl 1219.94052
[33] DOI: 10.1016/j.amc.2009.01.069 · Zbl 1162.93037
[34] DOI: 10.1016/j.camwa.2010.06.001 · Zbl 1201.94046
[35] DOI: 10.1016/j.mcm.2010.03.002 · Zbl 1201.93134
[36] DOI: 10.1016/j.camwa.2010.02.030 · Zbl 1193.93170
[37] DOI: 10.1080/00207160.2011.598514 · Zbl 1248.93161
[38] DOI: 10.1016/j.apm.2011.07.083 · Zbl 1242.62105
[39] DOI: 10.1016/j.mcm.2010.05.025 · Zbl 1202.93085
[40] DOI: 10.1016/j.camwa.2009.02.037 · Zbl 1189.62149
[41] DOI: 10.1049/iet-cta.2009.0064
[42] DOI: 10.1049/iet-cta:20070460
[43] DOI: 10.1007/s00034-008-9058-3 · Zbl 1173.93360
[44] DOI: 10.1016/j.mcm.2010.12.059 · Zbl 1219.93141
[45] DOI: 10.1016/j.apm.2010.10.003 · Zbl 1217.93163
[46] DOI: 10.1016/j.sysconle.2008.08.005 · Zbl 1154.93040
[47] DOI: 10.1016/j.camwa.2010.12.014 · Zbl 1217.15022
[48] DOI: 10.1080/00207160802123458 · Zbl 1188.65058
[49] DOI: 10.1016/j.apm.2011.10.028 · Zbl 1252.93045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.