Vanishing viscous limits for 3D Navier-Stokes equations with a Navier-slip boundary condition. (English) Zbl 1256.35068

Summary: In this paper, we investigate the vanishing viscosity limit for solutions to the Navier-Stokes equations with a Navier slip boundary condition on general compact and smooth domains in \(\mathbb R^3\). We first obtain the higher order regularity estimates for the solutions to Prandtl’s equation boundary layers. Furthermore, we prove that the strong solution to Navier-Stokes equations converges to the Eulerian one in \(C([0, T]; H^1(\Omega ))\) and \(L^\infty((0,T) \times \Omega)\), where \(T\) is independent of the viscosity, provided that initial velocity is regular enough. Furthermore, rates of convergence are obtained also.


35Q30 Navier-Stokes equations
35Q35 PDEs in connection with fluid mechanics
35B65 Smoothness and regularity of solutions to PDEs
35D35 Strong solutions to PDEs
Full Text: DOI arXiv


[1] Adams A., Fournier J.J.F.: Sobolev Space, 2nd edn. Pure and Applied Mathematics series, vol. 140. Elsevier Pte Ltd, Singapore (2009)
[2] Beirão da Veiga, H.: On the sharp vanishing viscosity limit of viscous incompressible fluid flows, Kazhikhov’s Memorial Volume: New Directions in Mathematical Fluid Mechanics, book series. Advances in Mathematical Fluid Mechanics, pp. 113–122. Birkhauser, Basel (2009) · Zbl 1195.35246
[3] Beirão da Veiga H., Berselli L.C.: Navier–Stokes equations: Green’s matrices, vorticity direction, and regularity up to the boundary. J. Differ. Equ. 246(2), 597–628 (2009) · Zbl 1155.35067
[4] Beirão da Veiga H., Crispo F.: Sharp inviscid limit results under Navier type boundary conditions. An L p theory. J. Math. Fluid. Mech. 12, 397–411 (2010) · Zbl 1261.35099
[5] Beirão da Veiga H., Crispo F., Grisanti C.R.: Reducing slip boundary value problems from the half to the whole space. J. Math. Anal. Appl. 377, 216–227 (2011) · Zbl 1223.35254
[6] Beirão da Veiga, H., Crispo, F.: The 3-D inviscid limit result under slip boundary conditions. A negative answer. J. Math. Fluid Mech. doi: 10.1007/s00021-010-0047-5 . (2010, in press). arXiv:1010.5131v1[math.AP] · Zbl 1261.35099
[7] Bourguignon J.P., Brezis H.: Remarks on the Euler equation. J. Funct. Anal. 15, 341–363 (1974) · Zbl 0279.58005
[8] Clopeau T., Mikelić A., Robert R.: On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary condition. Nonlinearity 11, 1625–1636 (1998) · Zbl 0911.76014
[9] Constantin P., Foias C.: Navier–Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988) · Zbl 0687.35071
[10] Constantin P., Wu J.: Inviscid limit for vortex patches. Nonlinearity 8(5), 735–742 (1995) · Zbl 0832.76011
[11] Diening L., Ruzicka M.: Strong solutions for generalized Newtonian fluids. J. Math. Fluid Mech. 7, 413–450 (2005) · Zbl 1080.76005
[12] Ebin D.G., Marsden J.: Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. Math. 92(2), 102–163 (1970) · Zbl 0211.57401
[13] Iftimie D., Planas G.: Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions. Nonlinearity 19(4), 899–918 (2006) · Zbl 1169.35365
[14] Iftimie, D., Sueur, F.: Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions. Arch. Rational Mech. Anal. doi: 10.1007/s00205-010-0320-z · Zbl 1229.35184
[15] Jäger W., Mikelić A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001) · Zbl 1009.76017
[16] Kato T.: Nonstationary flows of viscous and ideal fluids in R 3. J. Funct. Anal. 9, 296–305 (1972) · Zbl 0229.76018
[17] Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), pp. 85–98. Mathematical Sciences Research Institute Publications, vol. 2. Springer, New York (1984)
[18] Lions, P.L.: Mathematical topics in fluid mechanics, vol. 1. Incompressible models. Oxford Lecture Series in Mathematics and Its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1996) · Zbl 0866.76002
[19] Lopes Filho M.C., Nussenzveig Lopes H.J., Planas G.: On the inviscid limit for two-dimensional incompressible flow with Navier friction condition. SIAM J. Math. Anal. 36, 1130–1141 (2005) · Zbl 1084.35060
[20] Masmoudi N.: Remarks about the inviscid limit of the Navier–Stokes System. Commun. Math. Phys. 270, 777–788 (2007) · Zbl 1118.35030
[21] Masmoudi N., Rousset F.: Uniform regularity for the Navier–Stokes equation with Navier boundary condition. Arch. Rational Mech. Anal. 203, 529–575 (2012) · Zbl 1286.76026
[22] Navier C.L.M.H.: Sur les lois de l’equilibre et du mouvement des corps élastiques. Mem. Acad. R. Sci. Inst. France. 6, 369 (1827)
[23] Nečas J.: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle. Ann. Scuola Norm. Sup. Pisa 16(3), 305–326 (1962) · Zbl 0112.33101
[24] Novotný A., Straškraba I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, Oxford (2004)
[25] Oleinik O.A., Samokhin V.N.: Mathematical Models in Boundary Layers Theory. Chapman & Hall/CRC, London (1999) · Zbl 0928.76002
[26] Prandtl, L.: über Flüssigkeitsbewegungen bei sehr Kleiner Reibung, Verh. III Int. Math.-Kongr. (Heidelberg 1904), pp. 484–494. Teubner, Leipzig (1905)
[27] Sammartino M., Caflisch R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space, I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998) · Zbl 0913.35102
[28] Sammartino M., Caflisch R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space, II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192(2), 463–491 (1998) · Zbl 0913.35103
[29] Solonnikov V.A.: L p -estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain. J. Math. Sci. 105(5), 2448–2484 (2001)
[30] Swan H.S.G.: The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in $${\(\backslash\)mathbb{R}\^3}$$ . Trans. Am. Math. Soc. 157, 373–397 (1971) · Zbl 0218.76023
[31] Temam, R.: On the Euler equations of incompressible perfect fluids, Séminaire Équations Aux Dérivées Partielles- (Polytechnique). exp. 10, 1–14 (1974–1975)
[32] Temam R., Wang X.: Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case. J. Differ. Equ. 179(2), 647–686 (2002) · Zbl 0997.35042
[33] Wang X.: A Kato type theorem on zero viscosity limit of Navier–Stokes flows. Indiana Univ. Math. J. 50(Special Issue), 223–241 (2001) · Zbl 0991.35059
[34] Wang X.P., Wang Y.G., Xin Z.P.: Boundary layers in incompressible Navier–Stokes equations with Navier boundary conditions for the vanishing viscosity limit. Commun. Math. Sci. 4(8), 965–998 (2010) · Zbl 1372.76035
[35] Xiao Y.L., Xin Z.P.: On the vanishing viscosity limit for the Navier–Stokes equations with a slip boundary condition. Commun. Pure Appl. Math. 60, 1027–1055 (2007) · Zbl 1117.35063
[36] Xiao Y.L., Xin Z.P.: Remarks on the vanishing viscosity limit for the Navier–Stokes equations with a slip boundary condition. Chin. Ann. Math. 32(3), 321–332 (2011) · Zbl 1305.35106
[37] Xin Z.P., Yanagisawa T.: Zero-viscosity limit of the linearized Navier–Stokes equations for a compressible viscous fluid in the half-plane. Commun. Pure Appl. Math. 52(4), 479–541 (1999) · Zbl 0922.35116
[38] Xin Z.P., Zhang L.: On the global existence of solutions to the Prandtl’s system. Adv. Math. 181(1), 88–133 (2004) · Zbl 1052.35135
[39] Yudovich V.I.: A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid through a given region. Mat. Sb. 4(64), 562–588 (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.