Holmer, Justin; Lin, Quanhui Phase-driven interaction of widely separated nonlinear Schrödinger solitons. (English) Zbl 1256.35137 J. Hyperbolic Differ. Equ. 9, No. 3, 511-543 (2012). Cited in 4 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems 35C08 Soliton solutions Keywords:nonlinear Schrödinger equation (NLS); solitons PDF BibTeX XML Cite \textit{J. Holmer} and \textit{Q. Lin}, J. Hyperbolic Differ. Equ. 9, No. 3, 511--543 (2012; Zbl 1256.35137) Full Text: DOI arXiv OpenURL References: [1] DOI: 10.1088/0951-7715/22/4/004 · Zbl 1166.37027 [2] DOI: 10.2140/pjm.2010.248.63 · Zbl 1201.35176 [3] DOI: 10.1007/s00220-004-1128-1 · Zbl 1075.35075 [4] DOI: 10.1016/0022-1236(87)90044-9 · Zbl 0656.35122 [5] DOI: 10.1016/0022-1236(90)90016-E · Zbl 0711.58013 [6] DOI: 10.1007/s00220-011-1252-7 · Zbl 1300.37046 [7] Holmer J., J. Mod. Dyn. 1 pp 689– [8] Holmer J., Int. Math. Res. Not. 2008 pp 36– [9] DOI: 10.1002/cpa.20292 · Zbl 1193.35163 [10] DOI: 10.1002/cpa.3160460604 · Zbl 0795.35107 [11] DOI: 10.1215/S0012-7094-06-13331-8 · Zbl 1099.35134 [12] DOI: 10.3934/dcds.2010.28.1505 · Zbl 1223.35288 [13] DOI: 10.1081/PDE-200033754 · Zbl 1067.35113 [14] DOI: 10.4310/DPDE.2012.v9.n1.a1 · Zbl 1260.35014 [15] DOI: 10.1126/science.286.5444.1518 [16] DOI: 10.1038/nature747 [17] DOI: 10.1002/cpa.3160390103 · Zbl 0594.35005 [18] Zakharov V. E., Soviet J. Exp. Theor. Phys. 34 pp 62– This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.