On asymptotic stability of kink for relativistic Ginzburg-Landau equations. (English) Zbl 1256.35146

Summary: We prove the asymptotic stability of kink for the nonlinear relativistic wave equations of the Ginzburg-Landau type in one space dimension: for any odd initial condition in a small neighborhood of the kink, the solution, asymptotically in time, is the sum of the kink and dispersive part described by the free Klein-Gordon equation. The remainder converges to zero in a global norm.


35Q56 Ginzburg-Landau equations
35Q75 PDEs in connection with relativity and gravitational theory
83A05 Special relativity
Full Text: DOI arXiv


[1] Buslaev, V. S.; Perelman, G. S., Scattering for the nonlinear Schrödinger equations: states close to a soliton. St, Petersburg Math. J., 4, 1111-1142, (1993)
[2] Buslaev, V. S.; Perelman, G. S., On the stability of solitary waves for nonlinear Schrödinger equations, Am. Math. Soc. Trans., 164, 75-98, (1995) · Zbl 0841.35108
[3] Buslaev, V. S.; Sulem, C., On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 20, 419-475, (2003) · Zbl 1028.35139
[4] Cuccagna, S., Stabilization of solutions to nonlinear Schrödinger equations, Commun. Pure Appl. Math., 54, 1110-1145, (2001) · Zbl 1031.35129
[5] Cuccagna, S., On asymptotic stability of ground states of NLS, Rev. Math. Phys., 15, 877-903, (2003) · Zbl 1084.35089
[6] Cuccagna, S.; Mizumachi, T., On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations, Commun. Math. Phys., 284, 51-77, (2008) · Zbl 1155.35092
[7] Cuccagna, S., On asymptotic stability in 3D of kinks for the \({\phi^4}\) model, Trans. AMS, 360, 2581-2614, (2008) · Zbl 1138.35062
[8] Deift, P.A., Its, A.R., Zhou, X.: Long-time asymptotics for integrable nonlinear wave equations. Important Developments in Soliton Theory (Eds. Fokas A.S. and Zakharov V.E.). Springer, Berlin, 181-204, 1993 · Zbl 0926.35132
[9] Faddeev L.D., Takhtadzhyan L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987) · Zbl 0632.58004
[10] Gol’dman I.I., Krivchenkov V.D., Kogan V.I., Galitskii V.M.: Problems in Quantum Mechanics. Infosearch LTD., London (1960)
[11] Henry, D. B.; Perez, J. F.; Wreszinski, W. F., Stability theory for solitary-wave solutions of scalar field equations, Commun. Math. Phys., 85, 351-361, (1982) · Zbl 0546.35062
[12] Imaikin, V.; Komech, A. I.; Vainberg, B., On scattering of solitons for the Klein- Gordon equation coupled to a particle, Commun. Math. Phys., 268, 321-367, (2006) · Zbl 1127.35054
[13] Kirr, E.; Zarnesku, A., On the asymptotic stability of bound states in 2D cubic Schrödinger equation, Commun. Math. Phys., 272, 443-468, (2007) · Zbl 1194.35416
[14] Komech, A.; Kopylova, E., Weighted energy decay for 1D Klein-Gordon equation, Commun. PDE, 35, 353-374, (2010) · Zbl 1190.35134
[15] Kopylov, S.A.: Private communication
[16] Lions, J.L.: Quelques Mèthodes de Rèsolution des Problémes aux Limites non Linéaires. Paris, Dunod, 1969
[17] Merkli, M.; Sigal, I. M., A time-dependent theory of quantum resonances, Commun. Math. Phys., 201, 549-576, (1999) · Zbl 0934.47007
[18] Miller, J.; Weinstein, M., Asymptotic stability of solitary waves for the regularized long-wave equation, Commun. Pure Appl. Math., 49, 399-441, (1996) · Zbl 0854.35102
[19] Pego, R. L.; Weinstein, M. I., Asymptotic stability of solitary waves, Commun. Math. Phys., 164, 305-349, (1994) · Zbl 0805.35117
[20] Pillet, C. A.; Wayne, C. E., Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Differ. Equ., 141, 310-326, (1997) · Zbl 0890.35016
[21] Reed, M.: Abstract Non-Linear Wave Equations. Lecture Notes in Mathematics, Vol. 507. Springer, Berlin, 1976
[22] Reed M., Simon B.: Methods of Modern Mathematical Physics, Vol. III. Academic Press, New York (1979) · Zbl 0405.47007
[23] Rodnianski, I.; Schlag, W.; Soffer, A., Dispersive analysis of charge transfer models, Commun. Pure Appl. Math., 58, 149-216, (2005) · Zbl 1130.81053
[24] Sigal, I. M., Nonlinear wave and Schrödinger equations. I: Instability of periodic and quasiperiodic solutions, Commun. Math. Phys., 153, 297-320, (1993) · Zbl 0780.35106
[25] Soffer, A.; Weinstein, M. I., Multichannel nonlinear scattering for nonintegrable equations, Commun. Math. Phys., 133, 119-146, (1990) · Zbl 0721.35082
[26] Soffer, A.; Weinstein, M. I., Multichannel nonlinear scattering for nonintegrable equations. II, The case of anisotropic potentials and data. J. Differ. Equ., 98, 376-390, (1992) · Zbl 0795.35073
[27] Soffer, A.; Weinstein, M. I., Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136, 9-74, (1999) · Zbl 0910.35107
[28] Soffer, A.; Weinstein, M. I., Selection of the ground states for NLS equations, Rev. Math. Phys., 16, 977-1071, (2004) · Zbl 1111.81313
[29] Strauss, W.A.: Nonlinear invariant wave equations. Lecture Notes in Physics, Vol. 73. Springer, Berlin, 197-249, 1978
[30] Tsai, T.-P.; Yau, H.-T., Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions, Commun. Pure Appl. Math., 55, 153-216, (2002) · Zbl 1031.35137
[31] Tsai, T.-P., Asymptotic dynamics of nonlinear Schrödinger equations with many bound states, J. Differ. Equ., 192, 225-282, (2003) · Zbl 1038.35128
[32] Weinstein, M., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16, 472-491, (1985) · Zbl 0583.35028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.